Transcranial magnetic stimulation as an interventional tool for hedonic hunger and food cravings in metabolic and bariatric surgery patients: Theory and application

Vaughn R. Steele, Ph.D.

Assistant Professor
Department of Psychiatry
School of Medicine
Yale University

vaughn.steele@yale.edu

Disclosures:

Yale school of medicine **Funding:**

National Institute on Drug Abuse

NIDA - K12 DA000167

NIMH - R01 MH132044

Department of Psychiatry

Awarding NARSAD Grants

Yale Psychiatry

Godfrey D. Pearlson, M.D. Marc N. Potenza, M.D., Ph.D. Stephanie O'Malley, Ph. D. Hedy Kober, Ph.D. Sarah Yip, Ph.D.

Olin Neuropsychiatry **Research Center**

Godfrey D. Pearlson, M.D. Michal Assaf, M.D. Michael Stevens, Ph.D.

Project Team

Dale Bond, Ph.D.

Pavlos Papasavas, M.D.

Godfrey Pearlson, M.D.

Hollie Raynor, Ph.D.

Tara McLaughlin, Ph.D.

Yin Wu, Ph.D.

Darren Tishler, M.D.

Devika Umashanker, M.D.

Patrick Fang, B.A.

Kira Gresser, B.A.

Dongyu Kang, M.D.

The Steele Lab:

Patrick Fang

Dongyu Kang

Kira Gresser

Come Work at Yale

Yale school of medicine

Olin Neuropsychiatry Research Center

Contact me: vaughn.steele@yale.edu

Balanced vs Imbalanced Gas and Break

Brain Addiction Disease Model

Volkow, Koob, & McLellan

NEJM. 2016

Neurocircuits ←→ Synaptic ←→ Molecules ←→ Epigenetics

Brain Addiction Disease Model

Transcranial Magnetic Stimulation (TMS)

Primary Activations

Secondary Activations

Additional Reading/Discussion:

Steele, Biological Psychiatry, 2021;

Steele, EBioMedicine, 2020;

Steele, Front Neurosci, 2020

Steele & Maxwell, Pharm, BioChem, Beh, 2021;

Diana et al., 2017, Nature Reviews Neuroscience

Transcranial Magnetic Stimulation

Steele & Maxwell, Pharm, BioChem, Beh, 2021;

Primary Activations

Additional Reading/Discussion:

Steele, EBioMedicine, 2020;

Steele, Front Neurosci, 2020

Steele, Biological Psychiatry, 2021;

Diana et al., 2017, Nature Reviews Neuroscience

Cue Reactivity

Diana et al., 2017, *Nature* Reviews Neuroscience

Tan et al, Brain Topography, 2022

Current Study

Obese – pre-bariatric surgery

- Treatment-Seeking
- Active vs sham acute iTBS
 - Within participant manipulation

How do neural changes relate to behavioral changes?

Arrive to study days fasted

Assessing changes related to:

- Relative-reinforcing value of food (RRV)
- Monetary reward task

Which circuits are malleable?

Proposed N = 10

To date: N = 5

1 male/ 4 females

Mean age: 44.33

Mean BMI: 48.58

Power of Food mean: 4.25

Disinhibition of food mean: 4.33

Screened N = 36

Enrolled: N = 12

Completed: N = 5

In processes: N = 3

Withdrew: N = 3

Excluded: N = 1

Current Study: Monetary Reward Task

Bernat, Nelson, Steele, et al., J Abnormal Psychology, (2011)

Current Study: Monetary Reward Task

Feedback: Gain versus Loss

Acute rTMS: Increased reward processing brain signals

t, Nelson, Steele, et al., J mal Psychology, (2011)

Current Study: RRV

Choice #	Food	Button Presses	Money	Button Presses
1	Food (100 kcals)	20	Money (\$0.25)	20

Current Study: RRV

Food

Food (100 kcals)

Choice

Button

Draccac

100

	riesses		Fiesses
0 kcals)	20	Money (\$0.25)	20
0 kcals)	40	Money (\$0.25)	20
0 kcals) Post	MS 60	Money (\$0.25)	20
0 kcals)	80	Money (\$0.25)	20
	0 kcals) 0 kcals) 0 kcals) Post 7 0 kcals)	0 kcals) 40 0 kcals) Post TMS 60	0 kcals) 40 Money (\$0.25) 0 kcals) Post TMS 60 Money (\$0.25)

Money

Money (\$0.25)

Pre TMS

- 1					
	15	Food (100 kcals)	300	Money (\$0.25)	20
	16	Food (100 kcals)	320	Money (\$0.25)	20

Break Point

Current Study: RRV

Acute rTMS: Decreased food wanting

Partner

Summary & Next Steps

- Preliminary evidence in a pilot study that
 - rTMS may be an effective way to...
 - Increase reward processing
 - decrease food wanting

A very promising beginning...

Summary & Next Steps

- Many potential next steps
 - More rTMS pulses
 - More rTMS sessions
 - Longitudinal behavioral measures
 - etc.

Additional Reading/Discussion:

Steele, Biological Psychiatry, 2021;

Steele, EBioMedicine, 2020;

Steele, Front Neurosci, 2020

Steele & Maxwell, Pharm, BioChem, Beh, 2021;

- This opens the door to applying rTMS in other clinical populations
 - This is not a silver bullet
 - rTMS could modulate a targeted circuit to affect brain and behavioral changes in many situations

Thank you!

vaughn.steele@yale.edu

Join the Steele Lab

- Post-Doctoral Fellow
- Research Assistant

Dosing TMS

Current Study

Obese – pre-bariatric surgery

- Treatment-Seeking
- Active vs sham acute iTBS

How do neural changes relate to behavioral changes?

Arrive to study days fasted

Assessing changes related to: Relative-reinforcing value of food (RRV) Monetary reward task

Which circuits are malleable?

RRV + reward task during EEG

Active rTMS

RRV + reward task during EEG

Current Study: Monetary Reward Task

Feedback Stimulus	Outcome Valence	Relative Outcome	Feedback Stimulus	Outcome Valence	Outcome Magnitude
5 (25)	Gain	Correct	5 5	Gain	Small
5 25	Gain	Error	25 25	Gain	Large
5 25	Loss	Correct	5 5	Loss	Small
5 (25)	Loss	Error	25 25	Loss	Large

Gehring & Willooughby, Science, (2002)

Feedback Stimulus	Outcome Valence	Relative Outcome	Feedback Stimulus	Outcome Valence	Outcome Magnitude
5 25	Gain	Correct	5 5	Gain	Small
5 25	Gain	Error	25 25	Gain	Large
5 25	Loss	Correct	5 5	Loss	Small
5 25	Loss	Error	25 25	Loss	Large

= Selected Outcome

Bernat et al., Psychophysiology, (2015)

C) Block x Group Interaction

Baker et al., I J Psychophysiology (2020)

FDA Phase 0: Feasibility Study

Does chronic rTMS decrease cocaine use?

Are other behaviors affected?

Steele et al., Brain Stimulation, 2018; Steele et al., Frontiers in Neuroscience, 2019

L-dIPFC targeted for iTBS

Open-label

Down regulation of craving during iTBS

FDA Phase 0: Feasibility Study

Current and Future Studies

Methadone maintained

- Treatment-Seeking
- Active vs sham acute iTBS/cTBS

How do neural changes relate to behavioral changes?

Assessing neural changes related to: Cue reactivity Inhibitory control

Which circuits are malleable?

Assessing behavioral changes related to chronic rTMS: Opioid use; other substance use

Off-target changes (mood, etc.)

Is behavior malleable?