Sequential Changes in Glucose Metrics after MBS Using a CGM System in Individuals with T2DM and Obesity

Sang Hyun Kim, Anagarika Deleg

Department of Surgery, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea

XXVII IFSO World Congress

Melbourne 2024

CONFLICT OF INTEREST DISCLOSURE

I have the following potential conflict(s) of interest to report:

• Receipt of grants/research supports: a Korea Medical Device Development Fund grant funded by the Korean government (Ministry of Science and ICT)

XXVII IFSO World Congress

Melbourne 2024

Background: Importance of Glycemic Variability

*2011 J Clin Endocrinol Metab Bagger et al. **2008 Diabetes Care Monnier et al.

Background: Importance of Glycemic Variability

A: Glycemic variability (MAGE) CVD risk p=0.001 Mortality p<0.001

B: Fasting plasma glucose CVD risk p=0.020 Mortality p=0.011

C: HbA1c CVD risk p=0.091 Mortality p=0.055

Background: Theoretical Evidence of Sleeve G. with DJB

Basal pyloric pressure

Α

- -Pylorus function*
 - : infuse glucose into small intestine
 - \rightarrow increase pyloric pressure
 - \rightarrow delay gastric emptying time
- -Theoretical evidence of Sleeve G. + duodenal-jejunal bypass**
 - : preservation of pylorus
 - \rightarrow delay gastric emptying time
 - \rightarrow may decrease postprandial glycemic variability
 - \rightarrow no scientific evidence

*2007 Am J Physiol Endocrinol Metab Pilichiewicz et al. **2020 J Minim Invasive Surg Kim et al.

Aim of This Study

- 1. To analyze the effect of metabolic-bariatric surgery (MBS) on glucose control more accurately by investigating sequential changes in glucose metrics using a continuous glucose monitoring system (CGM) in individuals with T2DM & obesity.
- 2. To find the most advantageous procedure in terms of glycemic variability by comparing glucose metrics according to type of procedure.

FreeStyle Libre (Abbott Diabetes Care Inc.)

Materials & Methods

- 1. 40 Patients who underwent primary MBS with BMI ≥ 30kg/m² & T2DM from prospectively collected database in single institution from Feb. 2022 Jan. 2024
- 2. CGM measurement time point: baseline, immediate postop., & postop. 3 months
- 3. Outcome parameters
 - Baseline characteristics: Age, Sex, Height, Weight, Co-morbidities, Type of surgery

- Glucose metrics:

- using CGM: Average glucose, Glucose management index (GMI), Glucose variability, %Time in range; Target range (70 to 180 mg/dL), Very high (>250 mg/dL), High (>180 mg/dL), Low (<70 mg/dL), Very low (<54 mg/dL) ranges, Low glycemic event (<70 mg/dL)</p>
- > using laboratory profiles: HbA1c, Fasting plasma glucose, Fasting insulin, C-peptide

Baseline Characteristics

	SG	SG-DJB	RYGB	2
	(N=21)	(N=10)	(N=8)	ρ
Female	15 (71.4%)	8 (80.0%)	5 (62.5%)	0.713
Age	33.3 ± 7.6	46.3 ± 6.7	42.2 ± 10.8	< 0.001
Body Weight	126.4 ± 36.5	105.6 ± 14.6	102.2 ± 26.7	0.087
BMI	43.9 ± 11.3	37.5 ± 4.9	36.1 ± 7.6	0.080
Hemoglobin A1c	7.9 ± 1.8	7.7 ± 1.0	9.4 ± 2.4	0.088
Fasting plasma glucose (mg/dL)	166.0 ± 53.3	171.2 ± 65.2	195.6 ± 73.0	0.504
C-peptide (ng/mL)	4.8 ± 2.1	4.6 ± 1.5	2.6 ± 1.1	0.018
Fasting Insulin (uIU/mI)	38.5 ± 16.8	37.6 ± 23.2	18.0 ± 7.9	0.021
Hypertension	13 (61.9%)	7 (70.0%)	4 (50.0%)	0.686
Dyslipidemia	12 (57.1%)	9 (90.0%)	8 (100.0%)	0.026
Obstructive sleep apnea	11 (52.4%)	2 (20.0%)	4 (50.0%)	0.217
GERD	4 (19.0%)	3 (30.0%)	3 (37.5%)	0.558
NAFLD	18 (85.7%)	10 (100.0%)	7 (87.5%)	0.459
Time sensor active at baseline	64.0 ± 24.5	52.5 ± 17.8	77.8 ± 18.5	0.065
Time sensor active at immediate postoperative	79.2 ± 16.0	79.8 ± 16.5	82.1 ± 26.5	0.934
Time sensor active at 3 months	68.6 ± 24.3	61.6 ± 22.6	80.8 ± 13.5	0.397

Glucose Metrics (1): CGM Profiles

Glucose Variability

Glucose variability decreased immediately in all procedures.

- However, at 3-month (P=0.435)
- SG decrease -0.9
- SG-DJB decrease -0.7
- RYGB increase +2.9

Glucose Metrics (2): Time in Ranges

RYGB: Time in Ranges 1.6 100% 15.2 18.5 80% 60% 92.1 86.6 40% 65.4 20% 0% baseline immediate postop at 3 months ■<54 ■<70 ■70-180 ■>180 ■>250

- 1. Target range (70-180mg/dL) increased immediately postop. in All procedures (p<0.05).
- 2. Very High (>250), and High (>180) ranges decreased immediately postop. in All procedures (p<0.05).
- 3. Low (<70), and Very Low (<54) ranges had no difference in All procedures (p>0.05).
- 4. Target range increased more in SG-DJB than other groups without significance (p=0.150)

Glucose Metrics (3): Low Glucose Events

←SG ←SG-DJB ←RYGB

Glucose Metrics (4): Laboratory Profiles

SG SG-DJB RYGB

SG SG-DJB RYGB

Conclusion

- 1. Glucose metrics such as average glucose level, Glucose Management Index, %Time in range using CGM has improved immediately after all kinds of MBS.
- 2. Glucose variability decreased immediately after all kinds of MBS, however, did not maintain the effect until 3 month after surgery.
- 3. Low glucose events tend to be higher in RYGB than SG and SG-DJB without significance.