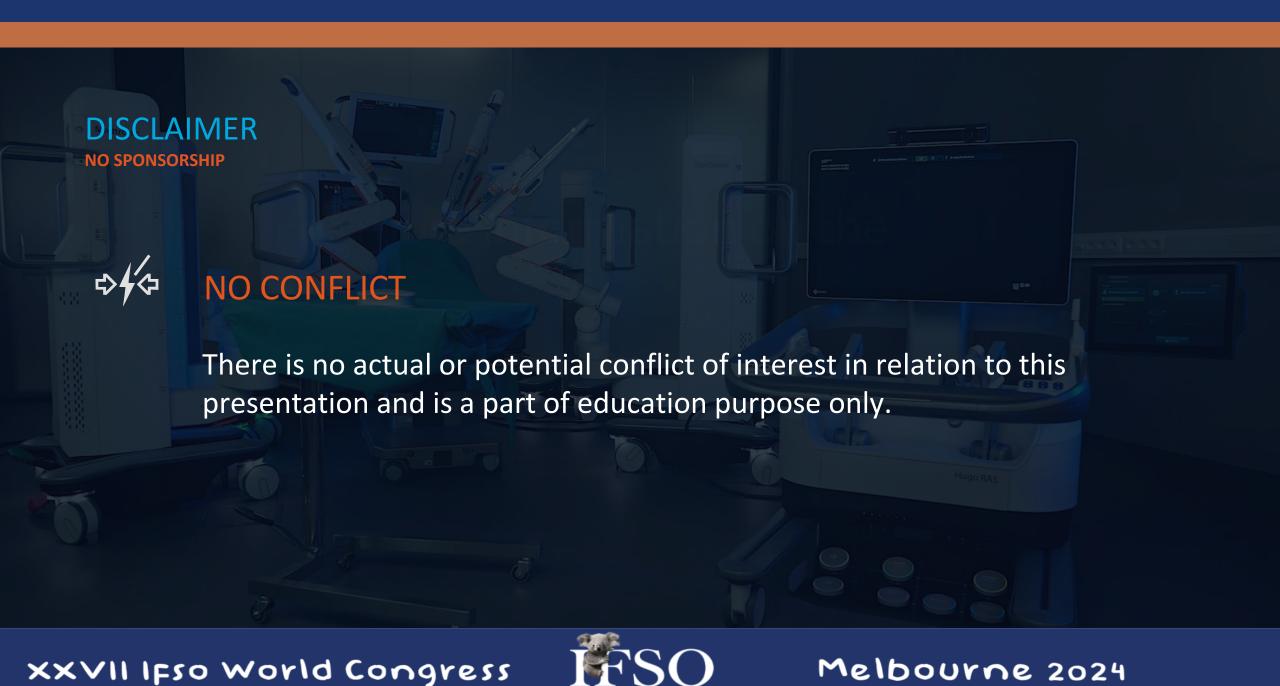

Hugo™ RAS Bariatrics INNOVATION


OUR INITIAL EXPERIENCE

Raj Palaniappan BAROSURGERY

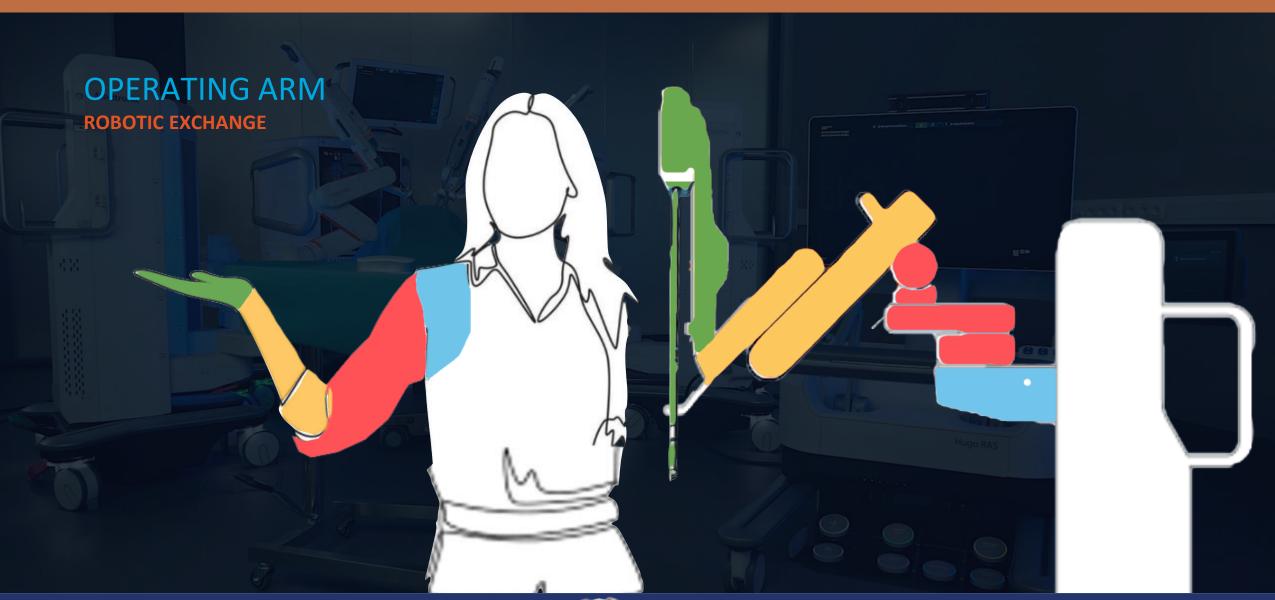
APOLLO HOSPITAL, CHENNAI

FOR ACCESS

Independent arm aids in better docking and dexterity to reach targets

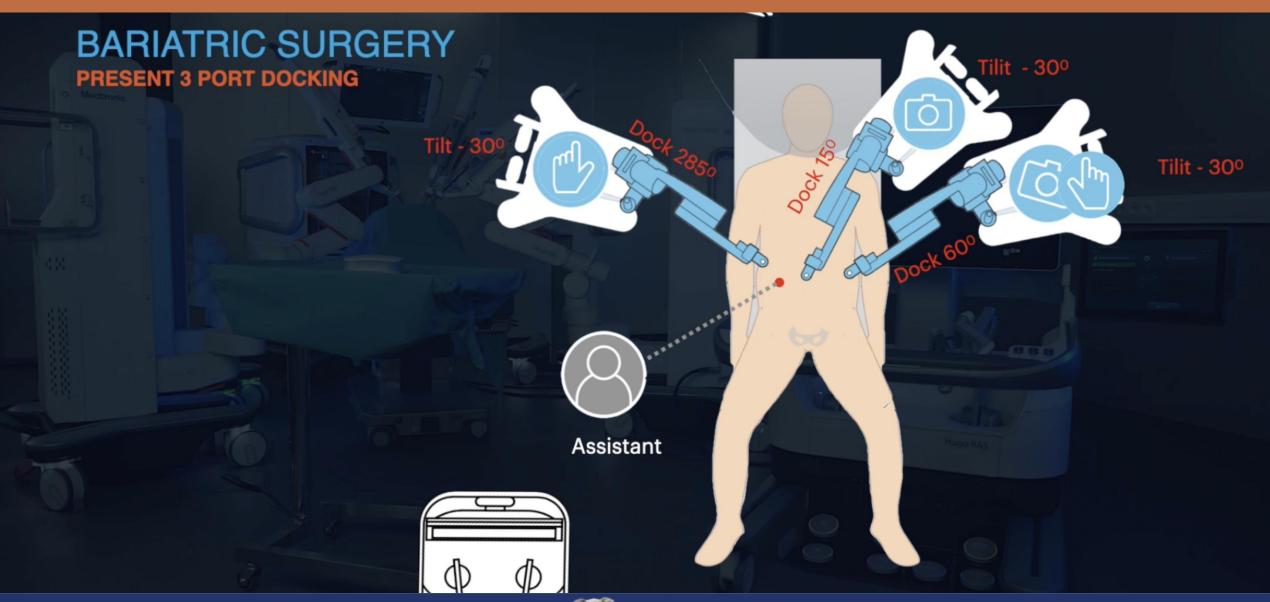
FOR VISION

Open console gives vision without sacrificing situational awareness


KEY DIFFERENTIATORS

FOR CONTROL

Provides pistol hand grip with pinch mechanism for ergonomic hold



XXVII IF so World Congress

Melbourne 2024

XXVII IF so World Congress

Melbourne 2024

OUR SERIES SINCE AUG 2022 Particlulars HugoRAS Remarks **Primary Surgery** 22 16 OAGB 5 SASJ RYGB 1 **Revision Surgery** 90 Sleeve to OAGB 4 Sleeve to SASJ 2 Reversal of OAGB 1 **Total** 29 Raj Palaniappan, et al. Aug 2022-24

COMPARATIVE STUDY

n = 203

Particlulars	HugoRAS	daVinci	MAS
n	29	26	148
BMI	<u>+</u> 44.6	<u>+</u> 43.8	<u>+</u> 46.2
Op. Time (min)	94	78	47
Console Time (min)	79	62	NA
Intra-operative Errors (GRS)	7.2 / 10	8.8 / 10	9.0 / 10
Blood Loss (ml)	< 10 ml	< 10 ml	< 10 ml
Conversion	1 (Technical)	1 (Surgical)	010
Post-operative Pain (VAS)	6	4	Hugo RAS 6
ALOS (days)	2.1	2.0	2.2
Major Complications	1 (Bleeding)	0	0
Raj Palaniappan, et al. Aug 2022-24			

OUR EXPERIENCE

SIGNIFICANT

- Short learning curve of 5 cases (10 cases with a novice bariatric surgeon)
- Permutation combinations tailor-made to individual cases
- Possibility of forward and reverse docking
- Significant advantage in multi-quadrant procedures
- Moderately economical for bariatric surgery in a corporate setting
- Potential benefits with vessel sealer, ultrasonic dissector and stapler
- Requirement of 2 experienced surgeons
- Fractionally longer latency with scope of improvement in hardware and software

HugoRAS BARIATRICS

FIRST EVER PUBLICATION

Dog in or Register
Get new issue alerts
Submit a Manuscript

International Journal of

Advanced Robotic & Innovative Surgery

Articles ▼ Search

Original Article

Early Experience with Hugo RAS Robotic Bariatric Surgery using BAROS Ergonomic Principles

Abstract

Background: Roboticassisted surgery is a rapidly advancing and evolving field of surgery today. The technology is increasingly being in the field of bariatric surgery and has an important role, especially in higher body mass index or superobese patients. Its use has shown significant benefits in revisional bariatric surgery as well. There have been two decades of robotic bariatric surgery through da Vinci robotic system. With the launch of Medtronic Hugo RAS robotic system in the third quarter of 2021 with technically new functionality byways of open surgeon's console and independent patient arms with various docking parameters, it involves plenty of learning and unlearning from the previously available system. Aims and Objectives: To evaluate the utility of the HUGO RAS system for Robotic Bariatric Surgery using BAROS ergonomic principles. Materials and Methods: After adequate technical training, our single center surgical team performed first ever recorded gastric bypass and evaluated the utility of the HugoRAS (robotic assistant system) in performing robotic one anastomosis gastric bypass (OAGB). Results: The platform was very efficient in performing OAGB robotically with no errors and uneventful postoperative recovery. The open console helps in better familiarisation of the operative environment and the docking principles including forward docking help in flexibility during multi-quadrant surgery and in following the ergonomic parameters precisely and aids in the replicability of the procedure. Conclusion: The Hugo RAS system is proven to be advantageous in bariatric surgery and as a surgical tool by itself.

Keywords: Bariatric surgery, Hugo RAS robot, metabolic surgery, one anastomosis gastric bypass, robot-assisted surgery, robotic surgery

Raj Palaniappan, Nikhilesh Krishna, Subbiah Tirunelveli Sivagnanam, Sri Harsha Muvya

Institute of Bariatrics, Apollo Hospitals, Chennai, Tamil Nadu, India

We are the second surgical team across the world to use Hugo RAS system for robotic bariatric surgery and the first to perform a bypass surgery. Our experience with this Hugo RAS OAGB was satisfactory and comparable with the da Vinci surgery. Independent flexible arms with forward and reverse docking capability allow us greater mobility of arms and aid in performing surgery efficiently and safely, especially in higher BMI/super-obese patients in our patient group. Multi-center trials with improved instrumentation would propel the wider use of this robotic platform for widespread deployment and assess its potential for various procedures.

Raj Palaniappan, et al. IJARIS, Volume 1 (1); 2023: 29-34

HugoRAS BARIATRICS FIRST EVER PUBLICATION

*) Log in or Register Seet new issue alerts Submit a Manuscript

International Journal of

Advanced Robotic & Innovative Surgery

Table 2: Docking time, console time, patient position, and port placements for all patients							
Patients	Patient position/docking style	Docking time (min)	Console time (min)	Camera arm	Right working	Left working	
Patient 1	Modified Lloyd Davis, camera between legs	15	102	Height - 70 cm	Height - 70 cm	Height - 70 cm	
	Forward docking of all ports			Tilt - 15	Tilt - 30	Tilt - 45	
Patient 2	Modified Lloyd Davis, camera between legs	10	94	Angle - 180 Height - 70 cm	Angle - 60 Height - 70 cm	Angle - 340 Height - 70 cm	
	Reverse docking of working ports			Tilt - 30	Tilt - 30	Tilt - 30	
Patient 3	Supine, camera left of patient Reverse docking of all ports	8	79	Angle - 45 Height - 70 cm Tilt - 30	Angle - 90 Height - 70 cm Tilt - 30	Angle - 300 Height - 70 cm Tilt - 30	
Patient 4	Supine, camera left of patient Reverse docking of all ports	8	73	Angle - 15 Height - 70 cm Tilt - 30	Angle - 50 Height - 70 cm Tilt - 30 cm	Angle - 385 Height - 70 cm Tilt - 30	
Patient 5	Supine, camera left of patient Reverse docking of all ports	7	75	Angle - 15 Height - 70 cm Tilt - 30	Angle - 50 Height - 70 cm Tilt 30 cm	Angle - 385 Height - 70 cm Tilt - 30	
	and policy			Angle - 15	Angle - 50	Angle - 385	

Table 3: Operative outcome of all patients up to 3-month follow-up

Particulars	Result
Intraoperative complications	Nil
Postoperative pain	Reduced
Length of stay	44 h
Postoperative complications	Nil
Postoperative morbidity	Nil
30-day readmission	Nil
90-day readmission	Nil

Raj Palaniappan, et al. IJARIS, Volume 1 (1); 2023: 29-34

CONCLUSIONS

INNOVATIVE

An ideal platform for abdominal surgeries beneficial to all specialities involving abdominal access

ERGONOMICS

System with one of the better ergonomic design to mimic laparoscopy thus reducing learning curve

OUTCOME

Early experience proves the system to be efficient in feasibility and outcome following complex surgery

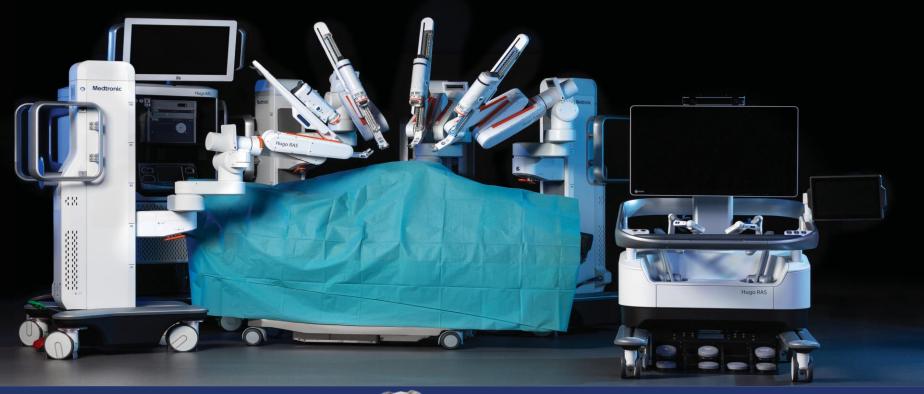
INSTRUMENTS

Paucity of instruments, especially tissue approximation and vessel sealing devices

COST

Doesn't seem to be economical as an initial investment, however recurrent costs are economical

FUTURE



Addition of new instruments, energy sources and tissue approximation devices will make it worth the trial

THANK YOU

