

### **Body composition**

What is the impact of obesity management medications on body composition?



Professor John B Dixon



## Disclosures: Professor John B Dixon

I-Nova

Nestle Health Science

Reshape Lifesciences

Novo Nordisk

Lilly

Eurodrug

HealthED

NACOS

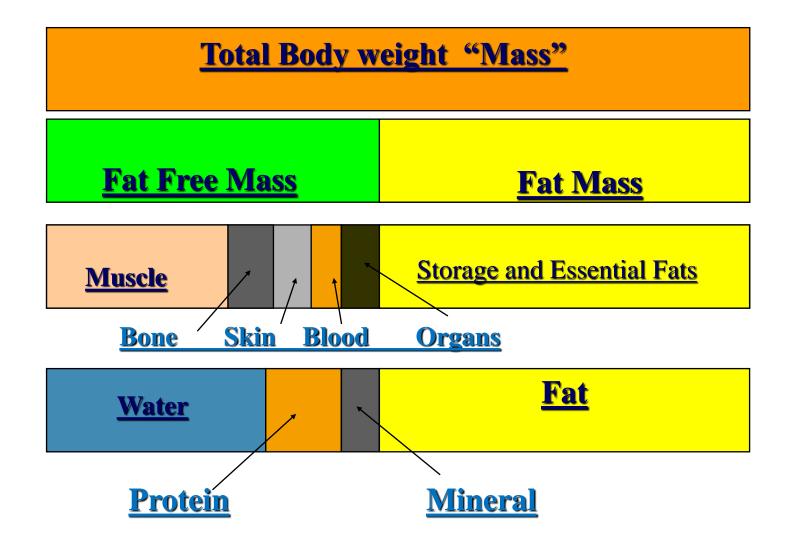
**Obesity collective** 

Advisory board

Consultant – Advisory board

Consultant

Advisory board and speaker fees

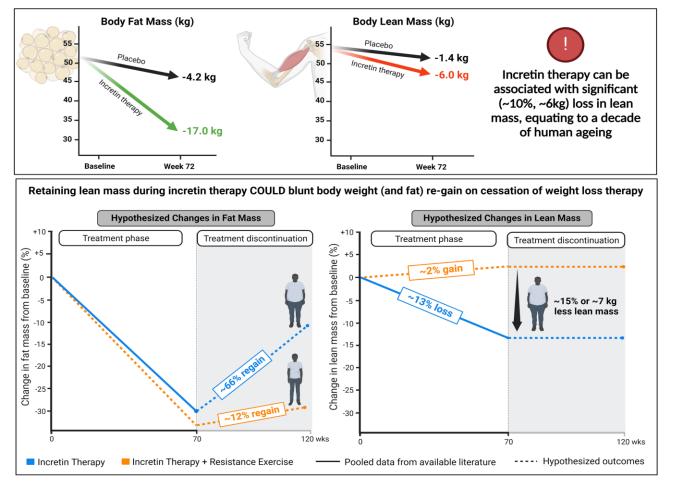

Advisory board and speaker fees

Advisory board and speaker fees

Educational programs Vice President Leaders group



# Body Composition Compartments





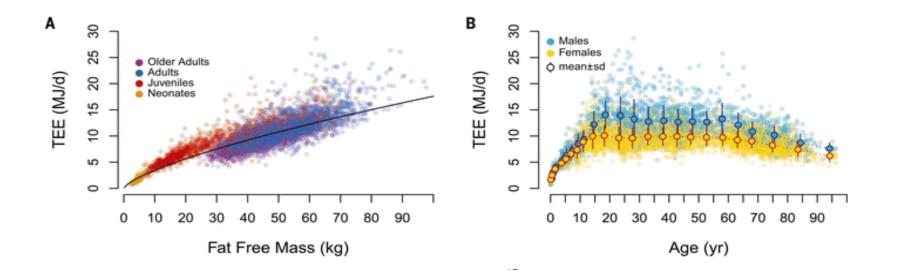



From: Incretin-Based Weight Loss Pharmacotherapy: Can Resistance Exercise Optimize Changes in Body Composition?

Diabetes Care. Published online April 30, 2024. doi:10.2337/dci23-0100



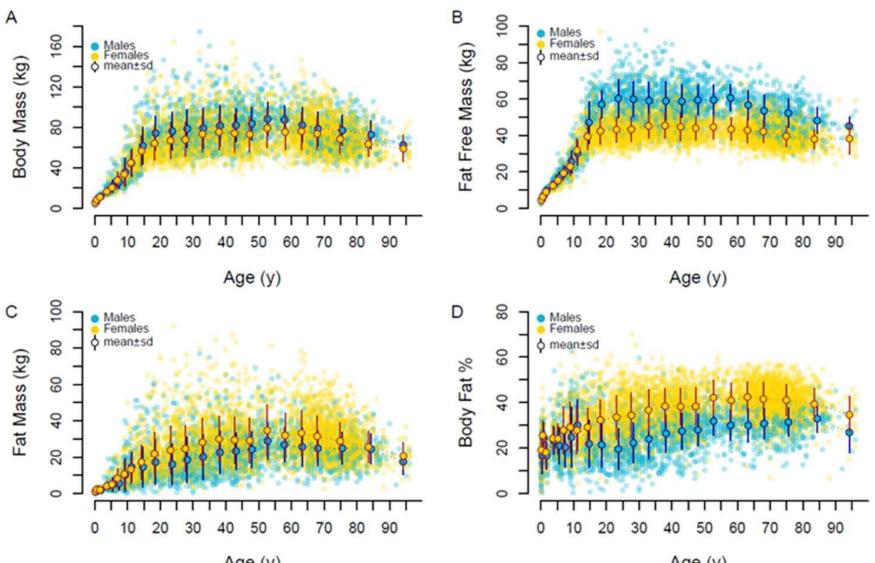
What is the flaw in this hypothesis?


That fat mass and lean body mass act independently with weight loss and weight gain

How much LBM is lost in a year of aging ?

We propose that tailored resistance exercise training be recommended as an adjunct to incretin therapy to optimize changes in body composition by preserving lean mass while achieving fat loss.

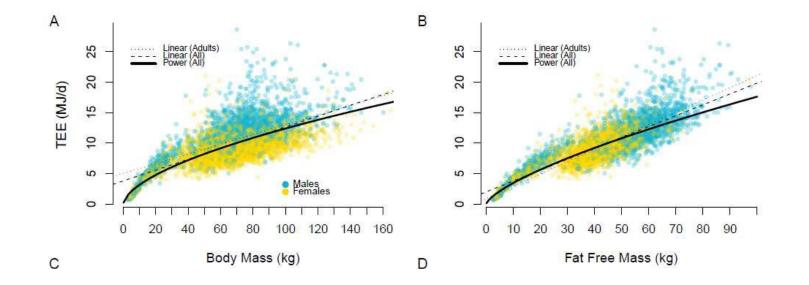
# Total energy expenditure: Fat free mass and age


Daily energy expenditure through the human life course, Volume: 373, Issue: 6556, Pages: 808-812, DOI: (10.1126/science.abe5017)








# Science MAAAS



Age (y)

Age (y)

# Total energy expenditure and weight and Fat free mass



Daily energy expenditure through the human life course, Volume: 373, Issue: 6556, Pages: 808-812, DOI: (10.1126/science.abe5017)





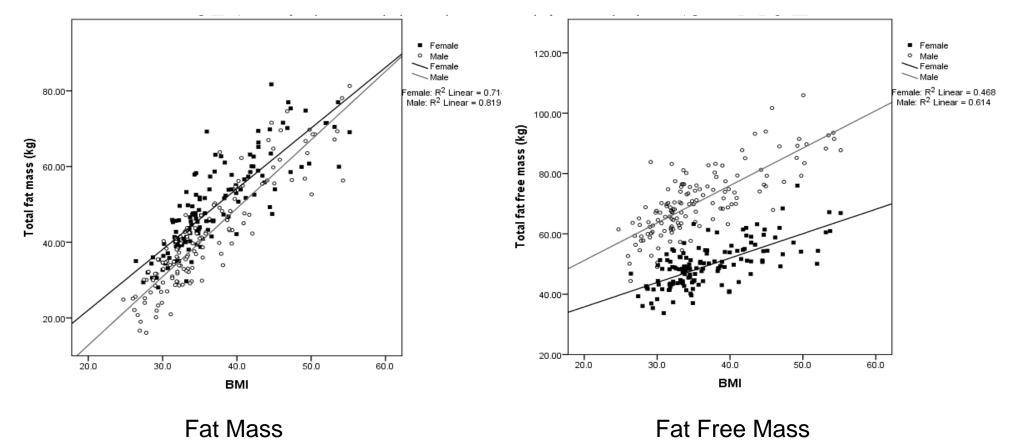
## What do we know?

- There is always loss of lean body mass with intentional weight loss Well almost always
- As an approximation, 25%  $\Delta$ FFM/ $\Delta$ weight was recommended and often used<sup>1</sup>
- The percentage change in FFM to change in weight ( $\Delta$ FFM/ $\Delta$ weight %) forms an appropriate 2 compartment metric
- With the use of more sophisticated methods have been made using dynamic approaches and results vary with age, gender, BMI, speed of weight reduction and nature of exercise<sup>2</sup>.
- In our systematic review we found great variance in outcome and this was influenced by gender, with males losing a greater proportion of FFM; limited effects of exercise; and rapid weight loss with very low energy diets and bariatric surgery generating a greater proportional loss of FFM<sup>3</sup>.

<sup>1</sup>Webster JD, Hesp R, Garrow JS. The composition of excess weight in obese women estimated by body density, total body water and total body potassium. *Hum Nutr Clin Nutr* 1984; 38(4): 299-306.

<sup>2</sup>Heymsfield SB, Gonzalez MC, Shen W, Redman L, Thomas D. Weight loss composition is one-fourth fat-free mass: a critical review and critique of this widely cited rule. *Obesity reviews : an official journal of the International Association for the Study of Obesity* 2014; 15(4): 310-21.




## The baseline characteristic of the participants (n=275)

| BASELINE MEASURES             | Women         | Men            |
|-------------------------------|---------------|----------------|
|                               | 138 (50%)     | 137 (50%)      |
| Age (years)                   | 47.2 (10.2)   | 43.8 (13.0     |
|                               | Range 18-65   | Range 18 - 65  |
| Weight (kg)                   | 98.8 (17.3)   | 111.8 (22.8)   |
|                               | Range 63 -151 | Range 70 - 172 |
| Height (m)                    | 1.64 (0.07)   | 1.78 (0.07)    |
| BMI (kg m <sup>-2</sup> )     | 36.9 (6.2)    | 35.7 (7.0)     |
|                               | Range 26 - 55 | Range 25-55    |
| Total Body Fat (kg)           | 49.2 (10.6)   | 41.2 (13.1)    |
|                               | Range 28 - 82 | Range 16 - 81  |
| Total body Fat Free Mass (kg) | 49.5 (7.3)    | 70.7 (11.4)    |
|                               | Range 34 - 76 | Range 44 - 106 |
| Percent Fat Mass              | 49.4 (4.5)    | 36.0 (6.0)     |
|                               | Range 21 - 61 | 19.4 - 50      |

Dixon JB, Lambert EA, Grima M, Rice T, Lambert GW, Straznicky NE. Fat-free mass loss generated with weight loss in overweight and obese adults: what may we expect? *Diabetes, obesity & metabolism*. 2015;17:91-93. doi: 10.1111/dom.12389



# Body composition and body mass index (whole body DEXA)



#### These data support a linear relationship

Dixon JB, Lambert EA, Grima M, Rice T, Lambert GW, Straznicky NE. Fat-free mass loss generated with weight loss in overweight and obese adults: what may we expect? *Diabetes, obesity & metabolism*. 2015;17:91-93. doi: 10.1111/dom.12389

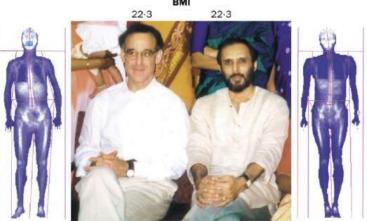
## Models of the change FFM% with change 10% of weight loss

|           | BMI 50 | BMI 45 | BMI 40 | BMI 35 | BMI 30 | R <sup>2</sup> | Mean |
|-----------|--------|--------|--------|--------|--------|----------------|------|
| Males     |        |        |        |        |        |                |      |
| Actual    | 38.7   | 38.7   | 45.3   | 38.1   | 42.2   | -              | 40.6 |
| Linear    | 30.6   | 35.9   | 41.3   | 46.6   | 51.9   | 0.43           | 41.3 |
| Inverse   | 37.1   | 37.1   | 37.1   | 37.1   | 37.1   | 0.45           | 37.1 |
| Quadratic | 44.8   | 40.7   | 38.9   | 39.3   | 42.4   | 0.46           | 41.2 |
| FM linear | 40.9   | 40.9   | 40.9   | 40.9   | 40.9   | -              | 40.9 |
| Female    |        |        |        |        |        |                |      |
| Actual    | 37.7   | 39.4   | 38.7   | 28.4   | 35.7   | -              | 36.0 |
| Linear    | 27.7   | 31.4   | 35.5   | 38.9   | 42.6   | 0.30           | 35.2 |
| Inverse   | 29.5   | 29.5   | 29.5   | 29.5   | 29.5   | 0.33           | 29.5 |
| Quadratic | 42.7   | 35.2   | 30.1   | 28.1   | 30     | 0.36           | 33.2 |
| FM linear | 33.9   | 33.9   | 33.9   | 33.9   | 33.9   | -              | 33.9 |

Dixon JB, Lambert EA, Grima M, Rice T, Lambert GW, Straznicky NE. Fat-free mass loss generated with weight loss in overweight and obese adults: what may we expect? *Diabetes, obesity & metabolism*. 2015;17:91-93. doi: 10.1111/dom.12389



## The Effects of Overfeeding on Body Composition: The Role of **Macronutrient Composition**


| Author                   | n - Men /<br>Women<br>Age | Body<br>Fat %       | Physical<br>Activity   | Dur-<br>ation | Kcal<br>Sur-<br>plus | Protein<br>(g/kg) | BW<br>(kg) | FM<br>(kg) | FFM<br>(kg) | Fat gain<br>(% wt gain) |                      |
|--------------------------|---------------------------|---------------------|------------------------|---------------|----------------------|-------------------|------------|------------|-------------|-------------------------|----------------------|
| Salans et al.<br>1971    | 5 / 0<br>26               | 19%                 | "Reduced"              | 3 months      |                      |                   | + 16.2     | + 10.4     | + 5.8       | 64%                     |                      |
| Norgan &<br>Durnin 1980  | 6 / 0<br>22               | 15%                 | Sedentary              | 9 weeks       | + 50%                | 2.2               | + 6.0      | + 3.7      | + 2.3       | 62%                     | In sedentary         |
|                          |                           | 15%                 |                        |               |                      | 2.4               | + 1.8 a    | + 1.1 a    | + 0.7       | 61%                     | subjects FM increase |
| Webb &                   | 4/5                       | (M) /               | Sedentary              | 30 days       | + 1000               | 1.7               | + 2.7 b    | + 2.0 b    | + 0.7       | 74%                     | -                    |
| Annis 1983               | 46                        | 37%<br>(W)          | ,                      | 5             | kcal                 | 1.2               | + 2.7 b    | + 2.1 b    | + 0.6       | 78%                     | is commonly 60 to    |
| Ravussin et<br>al. 1985  | 5 / 0<br>24               | 15%                 | 6000-7000<br>steps/d   | 9 days        | + 60%                | 2.1               | + 3.2      | + 1.8      | + 1.4       | 56%                     | 70% of weight        |
| Poehlman et<br>al. 1986  | 12 / 0<br>19              | 12%                 | Sedentary              | 22 days       | + 1000<br>kcal       | 2.4               | + 2.2      | + 1.1      | +1.1        | 50%                     | gained               |
| Bouchard et<br>al.1990   | 24 / 0<br>21              | 11%                 | < 30 min<br>walk daily | 100 days      | + 1000<br>kcal       |                   | + 8.1      | + 5.4      | + 2.7       | 67%                     |                      |
| Roberts et<br>al. 1990   | 7 / 0<br>24               | 14%                 | Sedentary              | 20 days       | + 1000<br>kcal       | 1.5               | + 2.5      | + 1.7      | + 0.8       | 68%                     |                      |
| Horton et                | 16 / 0                    | 28%                 | Inactive               | 2 weeks       | + 50%                | 1.2               | + 2.9      | + 1.5      | + 1.4       | 52%                     | FFM =30-40%          |
| al. 1995                 | 33                        | 20 /0               | mactive                | 2 weeks       | 1 50 %               | 1.2               | + 2.6      | + 1.5      | + 1.1       | 58%                     |                      |
| Lammert et               | 20 / 0                    | 15%                 | Inactive               | 3 weeks       | + 1200               | 1.7               | + 1.4      | + 0.8      | + 0.6       | 57%                     |                      |
| al. 2000                 | 22                        | 10 /0               | mactive                | 5 WEEKS       | kcal                 | 1.7               | + 1.6      | + 1.1      | + 0.5       | 69%                     |                      |
| Siervo et al.            | 6 / 0                     |                     |                        | 3 weeks       | + 20%                | 1.4               | + 0.7      | + 0.4      | + 0.3       | 57%                     |                      |
| 2008                     | 43                        | 21%                 | Inactive               | 3 weeks       | + 40%                | 1.5               | + 2.9      | + 1.5      | + 1.4       | 52%                     |                      |
| 2000                     | 10                        |                     |                        | 3 weeks       | + 60%                | 1.7               | + 5.7      | + 3.6      | + 2.7       | 63%                     |                      |
| Claesson et              | 11 / 14                   | 24%                 | 7800 step              | 14 days       | + 46%                | 2.0               | + 0.3      | + 0.0      | + 0.3       | 0%                      |                      |
| al. 2009                 | 23                        | 24/0                | avg                    | 14 days       | 1 40 /0              | 1.2               | + 0.8      | + 0.3      | + 0.5       | 38%                     |                      |
| Stanhope et              | 16 / 16                   | 29%<br>(M) /        | Color to rea           | 0 1           | 1.0.0/               |                   | + 1.6      | + 0.9      | + 0.7       | 56%                     |                      |
| al. 2009                 | 54                        | 41%<br>(W)<br>15%   | Sedentary              | 8 weeks       | +8%                  |                   | + 1.3      | + 0.7      | + 0.6       | 54%                     |                      |
| Ernersson et<br>al. 2010 | 12 / 6<br>26              | (M) /<br>31%<br>(W) | < 5000<br>steps/d      | 4 weeks       | + 70%                | 2.4               | + 6.4      | + 3.7      | + 1.8       | 58%                     |                      |

Leaf A, Antonio J. The Effects of Overfeeding on Body Composition: The Role of Macronutrient Composition - A Narrative Review. Int J Exerc Sci. 2017;10:1275-1296.



# Expected loss of FFM with weight loss

- 41% for men
- 34% for women
- This is greater than the 25% threshold previously used and suggests that intentional weight loss selectively preserves muscle and therefore yo-yo dieting is not a major issue
- Limitations age (young and old) ethnicity



Body fat 9·1% 21·2%



## Percentage of FFM loss with various methods of weight loss

| Method      | Number of Study<br>groups | Mean of study<br>groups |
|-------------|---------------------------|-------------------------|
| LCD         | 15                        | 17%                     |
| LCD & EX    | 6                         | 19%                     |
| LCD & Drugs | 3                         | 28%                     |
| VLCD        | 4                         | 29%                     |
| VLCD & Ex   | 5                         | 16%                     |
|             |                           |                         |
| BPD         | 15                        | 30%                     |
| RYGB        | 4                         | 30%                     |
| LAGB        | 15                        | 17%                     |
|             |                           |                         |

Chaston TB, & Dixon JB. et al, Int J Obes (Lond). 2007;31:743-50.



FFM/TWL Liraglutide 3 mg, Naltrexone Bupropion 32mg/360mg

Liraglutide: TWL6.3 kg FFM/TWL 14%

Elkind-Hirsch KE, Chappell N, Shaler D, Storment J, Bellanger D. 2022;118:371-381. doi: 10.1016/j.fertnstert.2022.04.027

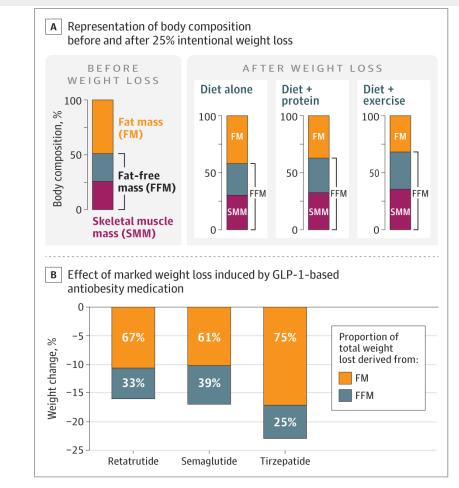
Naltrexone – Bupropion TWL 8.2 kg FFM/ TWL 22%

Smith SR, Fujioka K, Gupta AK, Billes SK, Burns C, Kim D, Dunayevich E, Greenway FL. Diabetes, obesity & metabolism. 2013;15:863-866. doi: 10.1111/dom.12095

- Chaston review Orlistat and Sibutramine
- Gotfredsen et al. 2001 LCD+Orlistat 11.2kg FFM/TWL 11.6% 52 weeks n=16
- LCD+Sibutramine • Kamel et al. 2000
- Berube-Parent et al. 2001 LCD+Sibutramine

10.6kg FFM/TWL 31.1% 26 weeks n=19

10.7kg FFM/TWL 38.3% 13 weeks n=8


Chaston TB, & Dixon JB. et al, Int J Obes (Lond). 2007;31:743-50.





#### From: Is Weight Loss-Induced Muscle Mass Loss Clinically Relevant?

JAMA. Published online June 03, 2024. doi:10.1001/jama.2024.6586



#### Figure Legend:

Body Composition Before and After Weight LossRepresentation of body composition before and after 25% intentional weight loss induced by energy restriction showing the attenuation of weight loss–induced reduction in fat-free mass (FFM) and skeletal muscle mass (SMM) through dietary protein and exercise (A) and the effect of marked weight loss induced by GLP-1–based antiobesity medications on the proportion of total weight lost derived from fat mass and lean body mass (LBM) or FFM (B). Data are from C Harris et al, J Rosenstock et al, JPH Wilding et al, and AM Jastreboff et al.



# Conclusions

- There is a linear association between FM and FFM with weight loss and weight gain
- Most intentional weight loss generates less FFM (50% muscle) loss than expected for the weight loss.
- How would resistance exercise and increasing quality protein assist this situation?
- Three drugs
  - Sibutramine, 31 and 38%
  - Semaglutide 2.4 mg 39%
  - Retatrutide 31%
- We need more information GLP-1 agonists especially those associated with greater weight loss
- We need information about the young, elderly, those at risk of sarcopenia and data from different ethnic groups
- We have very little to no information about drug effects regional Bone density and Bone mineral content

