

MONASH TRANSLATIONAL MEDICINE

The "weight" of weight loss in diabetes treatment

IFSO Congress, September 2024

Priya Sumithran

Associate Professor, Monash University, School of Translational Medicine (Dept of Surgery) Clinical lead, Obesity Medicine, Alfred Health (Dept of Endocrinology and Diabetes)

A partnership between:

Disclosures

• Co-authorship of manuscripts with medical writer provided by Novo Nordisk, Eli Lilly

Outline

- 1. WHY?
- 2. WHEN?
- 3. HOW MUCH?

HOLISTIC PERSON-CENTRED APPROACH TO T2DM MANAGEMENT

1 = American Diabetes Association Professional Practice Committee. 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022 Jan 1;45(Suppl 1):S144-74.

ACEI, Angiotensin-Converting Enzyme Inhibitor; ARB, Angiotensin Receptor Blockers; ASCVD, Atherosclerotic Cardiovascular Disease; BP, Blood Pressure; CKD, Chronic Kidney Disease; CV, Cardiovascular; eGFR, Estimated Glomerular Filtration Rate; GLP-1 RA, Glucagon-Like Peptide-1 Receptor Agonist; HF, Heart Failure; SGLT21, Sodium–Glucose Cotransporter-2 Inhibitor; T2D, Type 2 Diabetes.

Weight loss has dose-dependent and tissue-dependent effects

Effects of progressive weight loss on metabolic function and adipose tissue biology in humans with obesity

	5% Weight loss	11% Weight Loss	16% Weight Loss
Intrahepatic triglyceride content	0		000
Intra-abdominal adipose tissue volume	0		
Adipose tissue insulin sensitivity	Ø	O	()
Liver insulin sensitivity	O	O	Ø
Muscle insulin sensitivity	O		000
Beta cell function	3		
Adipose tissue biology*		3	00
Inflammatory markers			Ø

*Upregulation of genes involved in cholesterol flux, downregulation of genes involved in lipid synthesis, ECM remodeling and oxidative stress. ECM, extracellular matrix

Weight loss has 'upstream' benefits in T2D

When?

vs standard lifestyle + placebo or metformin 850 mg twice daily

Primary outcome: diagnosis of T2D

Short duration T2D: REMISSION

Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial

Lancet 2018; 391: 541-51

Michael E J Lean*, Wilma S Leslie, Alison C Barnes, Naomi Brosnahan, George Thom, Louise McCombie, Carl Peters, Sviatlana Zhyzhneuskaya, Ahmad Al-Mrabeh, Kieren G Hollingsworth, Angela M Rodrigues, Lucia Rehackova, Ashley J Adamson, Falko F Sniehotta, John C Mathers, Hazel M Ross, Yvonne McIlvenna, Renae Stefanetti, Michael Trenell, Paul Welsh, Sharon Kean, Ian Ford, Alex McConnachie, Naveed Sattar, Roy Taylor*

Aim: to assess whether intensive weight management within primary care would achieve remission of T2D

Inclusion: 20-65yo + BMI 27-45 kg/m² + T2D <6y duration + no insulin

Intervention: withdrawal of T2D and HT meds + total diet replacement (825–853 kcal/day for 3–5 months) + stepped food reintroduction (2–8 weeks) + structured support (up to 52 weeks) vs standard care as per guidelines

Co-primary outcomes: weight loss of 15 kg or more + remission of diabetes from baseline to 12 months (HbA1c <6.5% [48 mmol/mol] after ≥2 months off medications)

Longstanding T2D: IMPROVEMENT

Metabolic surgery versus conventional medical therapy in patients with type 2 diabetes: 10-year follow-up of an open-label, single-centre, randomised controlled trial

Geltrude Mingrone, Simona Panunzi, Andrea De Gaetano, Caterina Guidone, Amerigo Iaconelli, Esmeralda Capristo, Ghassan Chamseddine, Stefan R Bornstein, Francesco Rubino

Aim: to compare metabolic surgery with medical therapy for the treatment of type 2 diabetes in people with obesity

Inclusion: 30-60yo + BMI >35 kg/m² + T2D >5y + HbA1c >7.0%

Intervention: lifestyle modification and target-driven adjustment of T2D medications vs RYGB or BPD

Primary outcome: T2D remission at 2 years (fasting glucose <100 mg/dL [5.6 mmol/L] and HbA1c <6.5% for >1y without medication)

10-year durability (n=58 of original 60 participants)

Longstanding T2D: PREVENTION OF COMPLICATIONS

Longstanding T2D: PREVENTION OF COMPLICATIONS

Meta-analysis, 3 RCTs, 9 cohort studies, follow-up 1-15 years

How much?

Glycaemic outcomes

Improvement HbA1c²

Benefits beyond glycaemia

Summary

- obesity/adiposopathy causes both insulin resistance and beta cell dysfunction
- weight loss
 - is beneficial regardless of stage of T2D
 - is beneficial even at <5%
 - >10% weight loss is disease-modifying and has wide-ranging impact
 - has upstream benefits on health and quality of life