Next Generation Metabolic Surgery

Presenter Disclosure

Philip R. Schauer MD

Board Member/Advisory Panel – GI Dynamics; Persona; Keyron, Mediflix

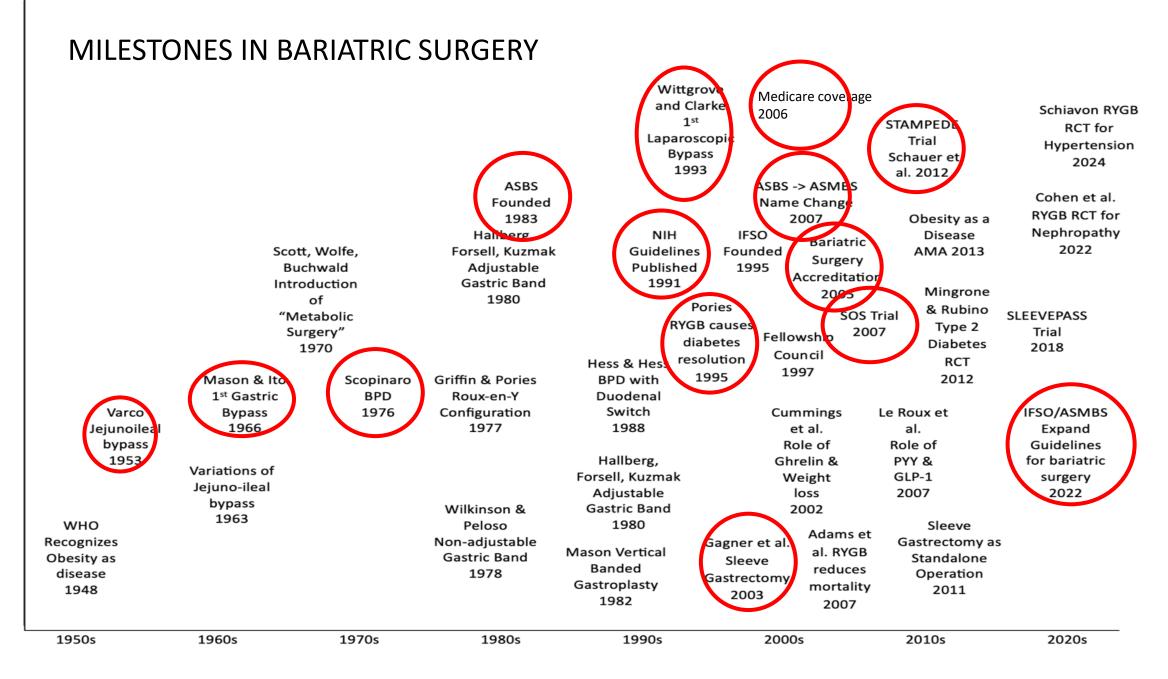
Consultant – Ethicon, Medtronic, Keyron, Novo Nordisk, Lilly, Heron

Research Support – Ethicon, NIH, Medtronic, Pacira;

Stock/Shareholder - SEHQC, LLC

Clinical Trials (Last 2 Years):

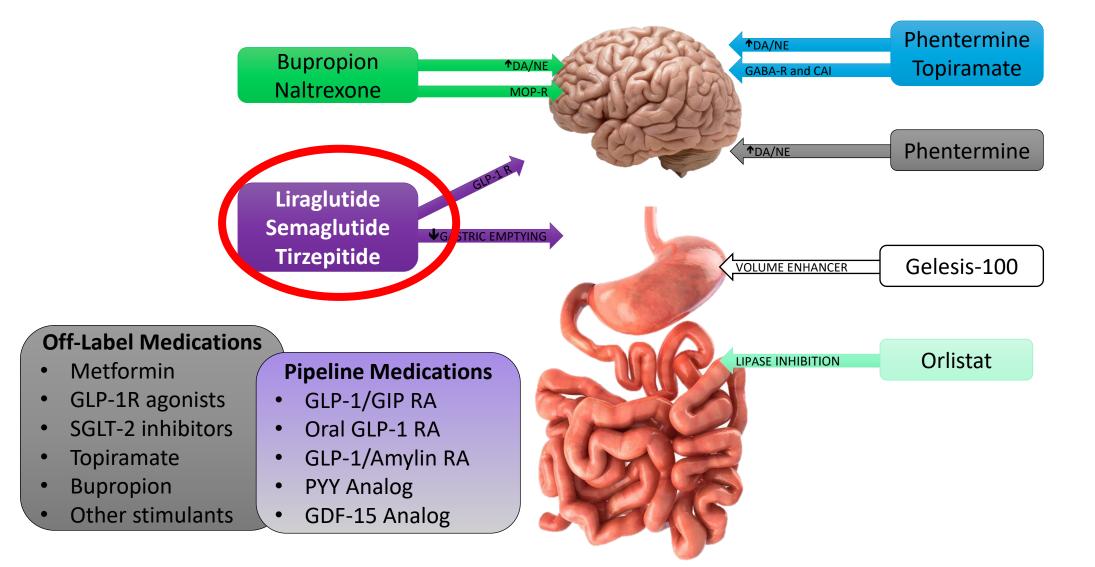
STAMPEDE

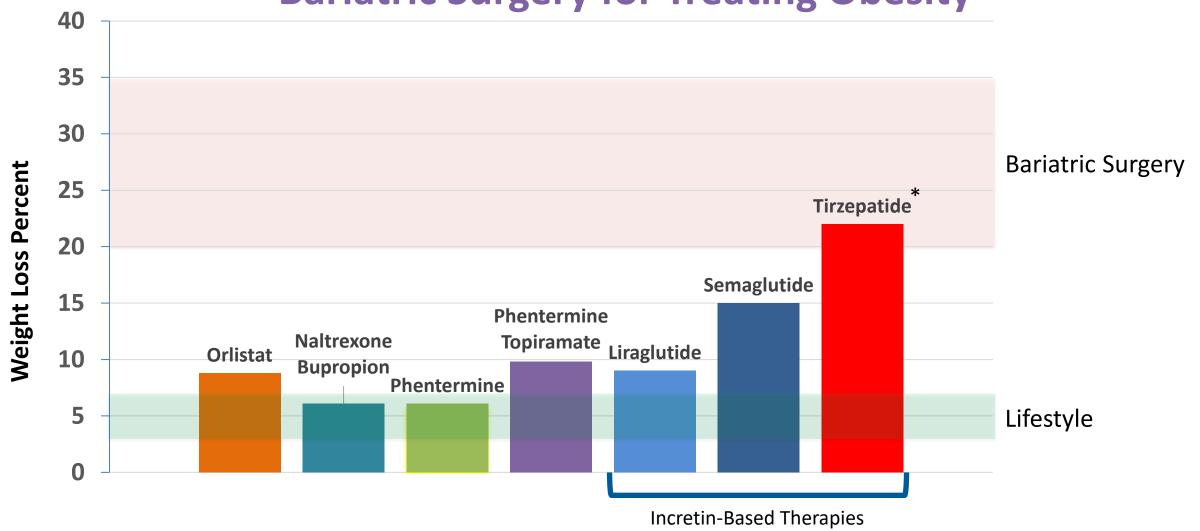

MS-MACE

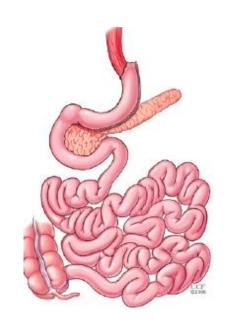
ARMMS

SPLENDOR-NASH

SPLENDID-Cancer

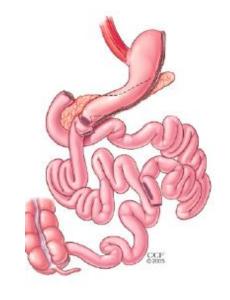



WELCOME TO THE ERA OF GLP1-RA'S!


FDA Approved Anti-Obesity Medications

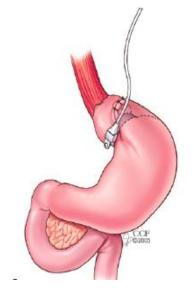
Effectiveness of Anti-obesity Medications vs. Lifestyle and Bariatric Surgery for Treating Obesity

Bariatric/Metabolic Surgery 2024



69%

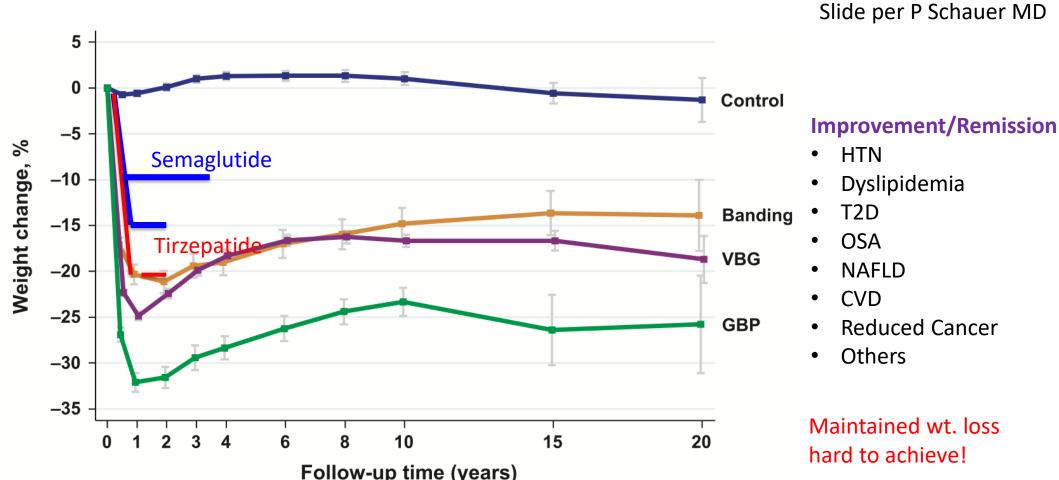
Gastric Bypass


27%

Duodenal Switch

SADI

3.0 %



Gastric Banding

1.0%

Weight Loss After Metabolic Surgery Is Sustained for at Least 20 years-Superior to all other Treatments Swedish Obese Subjects Study

RYGB > 10 YEAR F/U

18 Studies Av. BMI 47 BMI Range 35-60+

Reference	Type	Initial #	FU %	Duration of FU	# pts at max. years	% E V	L at max. years % r	eoperation
Fobi, 1993 [14]	RYGB	100	NR	10	46	55		12
Wolfel, 1994 [15]	RYGB	143	71	10	83	49		NR
Pories, 1995 [16]	RYGB	608	97	14	10	49		38
Sugerman, 2003 [17]	RYGB	1025	37	10–12	135	52		NR
Gunther, 2006 [5]	RYGB	195	69	25	72	27		8
Christou, 2006 [18]	RYGB	274	84	12	161	68		NR
Sjostrum, 2007 [19]	RYGB	265	NR	15	10	66		17
Higa, 2011 [20]	RYGB	242	29	10	65	57	0.004 = 1.44	32
Angrisani, 2013 [13]	RYGB	24	84	10	21	69	= 30% TWL	29
Obeid, 2016 [21]	RYGB	328	46	10	134	59		64
Chen, 2016 [22]	RYGB	173	NR	11	78	67		NR
Maciejewski, 2016 [23]	RYGB	1787	82	10	564	56		NR
Monaco-Ferreira, 2017 [24]	RYGB	166	26	10	44	52		NR
Valezi, 2013 [25]	RYGB	211	55	10	116	65		NR
Mehaffey, 2016 [26]	RYGB	1087	61	10	651	52		NR
Kothari, 2017 [27]	RYGB	1402	70	10	191	56		NR
Carbajo, 2017 [28]	SAGB	1200	72	12	29	70		2
Sheikh, 2017 [29]	SAGB*	156	89	11	102	84		14

Lifestyle:

years

6% TWL @10

Look AHEAD

AOM'S

DATA

NO 5 YR

SLEEVE GASTRECTOMY > 10YEAR F/U

Reference	Procedure type	Initial #	Follow-up %	Duration of FU	# pts at max. years	%EWI	at max. years Reoperation %
Arman, 2016 [54]	Sleeve	110	59	11	47	62	= 22% TWL ³²
Felslenreich, 2016 [55]	Sleeve	53	60	10	32	53	36

^{*} indicates silastic ring used

Superiority of Surgery Over Medical Treatment

- Magnitude of Weight loss
- Durability of Weight loss
- Effective in High BMI
- Reduction of medication dependency
- Co-morbidity Improvement
- Cardiovascular Benefit
- NASH Fibrosis Reduction
- Cancer Reduction
- Cost-effectiveness

How Can GLP1's Improve Surgery Outcomes?

Safety

Five-Year Analysis of the MBSAQIP Database: Are We Getting Better?

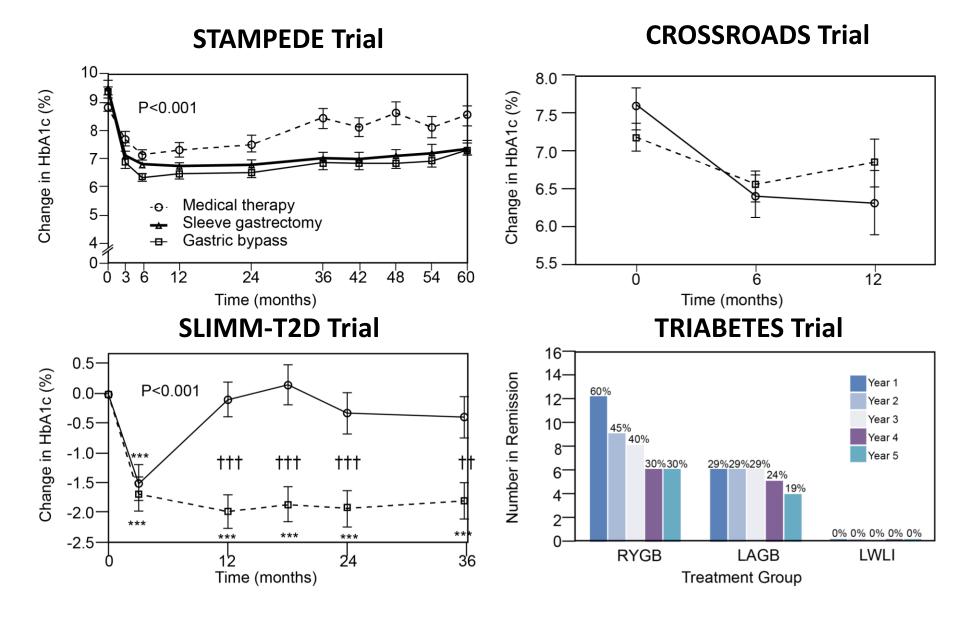
Evaluation of 690,770 Roux-en-Y Gastric Bypass and Sleeve Gastrectomy using MBSAQIP Database Outcomes of cases from 2015 to 2019 Decrease in 30-day Decrease in end-organ Decrease in all-cause readmission dysfunction mortality $4.22\% \longrightarrow 3.43\%$ $0.21\% \longrightarrow 0.13\%$ $0.11\% \longrightarrow 0.08\%$ (percent of patients) (percent of patients) (percent of patients) Decrease in postoperative Decrease in bleeding units Decrease in postoperative surgical site infection (SSI) pneumonia $0.73\% \longrightarrow 0.64\%$ $0.23\% \longrightarrow 0.22\%$ $0.22\% \longrightarrow 0.19\%$ (percent of patients)

(percent of patients)

(percent of patients)

Preop Wt. Loss for BMI >70

Efficacy


Power of Combining The Two Most Effective Treatments of Metabolic Disease

Surgery + Meds Superior to Medical Rx of T2D: 12 RCT's up to 10 YR F/U

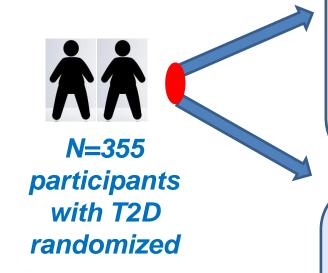
STUDY	Pts w/BMI <35 kg/m ²	Study design	No. pts	Follow- up (months)	Remission criteria	Remission or change in HbA1c (%) ^a	P value
Dixon	22%	LAGB vs control	60	24	HbA1c < 6.2%	73 vs 13	< 0.001
Schauer	36%	RYGB vs SG vs control	150	60	HbA1c ≤ 6.0%	22 vs 15 vs 0	< 0.05
Mingrone	0%	RYGB vs BPD vs control	60	60	HbA1c ≤ 6.5%	42 vs 68 vs 0	0.003
Ikramuddin	59%	RYGB vs control	120	60	HbA1c < 6.0%	7 vs 0	0.02
Liang	100%	RYGB vs control	101	12	HbA1c < 6.5%	90 vs 0 vs 0	< 0.0001
Halperin	34%	RYGB vs control	38	12	HbA1c < 6.5%	58 vs 16	0.03
Courcoulus	43%	RYGB vs LAGB vs control	69	36	HbA1c < 6.5%	40 vs 29 vs 0	0.004
Wentworth	100%	LAGB vs control	51	24	FBG < 7.0 mmol/L	52 vs 8	0.001
Parikh	100%	(RYGB/LAGB/SG) vs control	57	6	HbA1c < 6.5%	65 vs 0	0.0001
Ding	34%	LAGB vs control	45	12	HbA1c < 6.5%	33 vs 23	0.46
Cummings	25%	RYGB vs control	43	12	HbA1c < 6.0%	60 vs 5.9	0.002
Shah	85%	RYGB vs control	80	24	HbA1c < 6.5%	60 vs 2.5	<0.001

Alliance of Randomized Trials of Medication vs. Metabolic Surgery - ARMMS

JAMA | Original Investigation

Long-Term Outcomes of Medical Management vs Bariatric Surgery in Type 2 Diabetes

Anita P. Courcoulas, MD; Mary Elizabeth Patti, MD; Bo Hu, PhD; David E. Arterburn, MD; Donald C. Simonson, MD, ScD; William F. Gourash, PhD; John M. Jakicic, PhD; Ashley H. Vernon, MD; Gerald J. Beck, PhD; Philip R. Schauer, MD; Sangeeta R. Kashyap, MD; Ali Aminian, MD; David E. Cummings, MD; John P. Kirwan, PhD


Feb 2024

IMPORTANCE Randomized clinical trials of bariatric surgery have been limited in size, type of surgical procedure, and follow-up duration.

OBJECTIVE To determine long-term glycemic control and safety of bariatric surgery compared with medical/lifestyle management of type 2 diabetes.

- Editorial page 643
- Multimedia
- Supplemental content

Trial Design

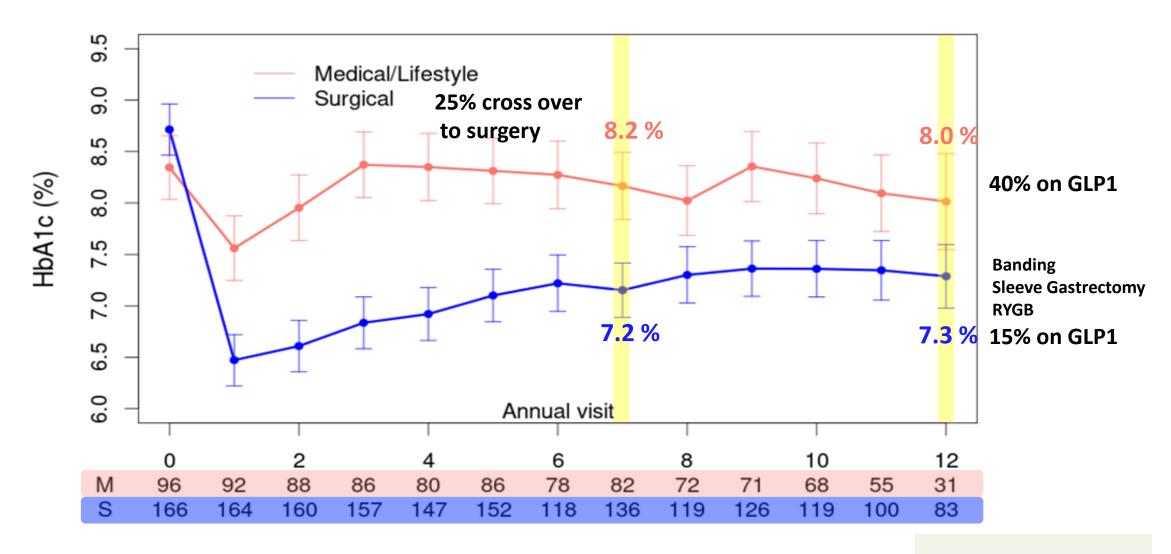
Intensive Medical & Weight Management

Individualized Nutrition Counseling
Exercise Counseling
Behavioral Education
Medication Adjustment
Intensive Intervention: At Least 1
Year

Continued Care with Currently-Available Medications & Lifestyle Support

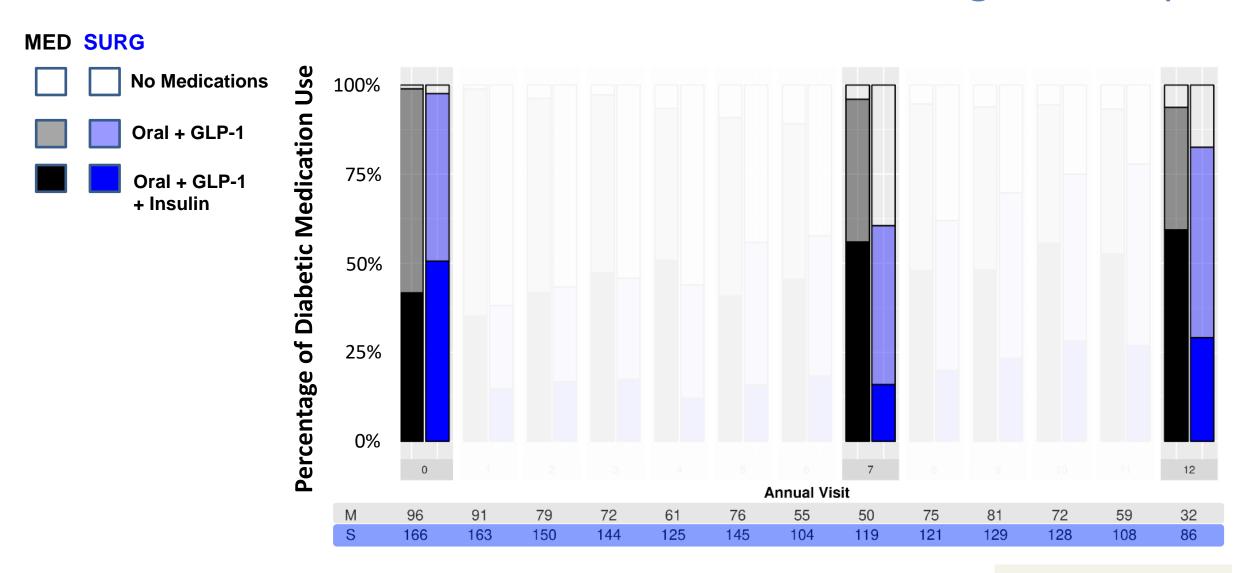
Metabolic Bariatric Surgery

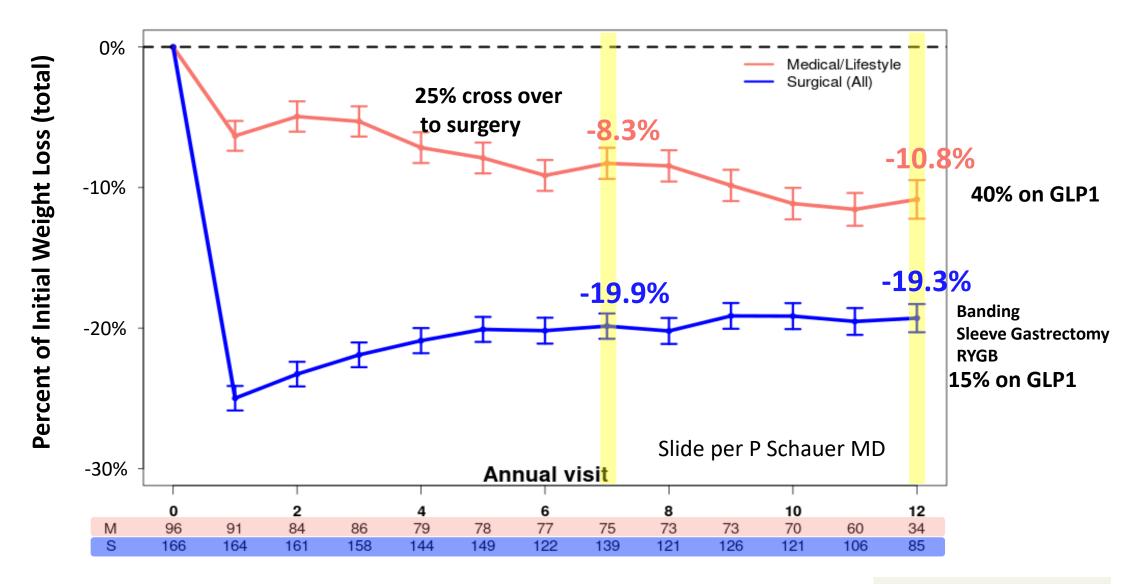
Gastric Bypass (RYGB)



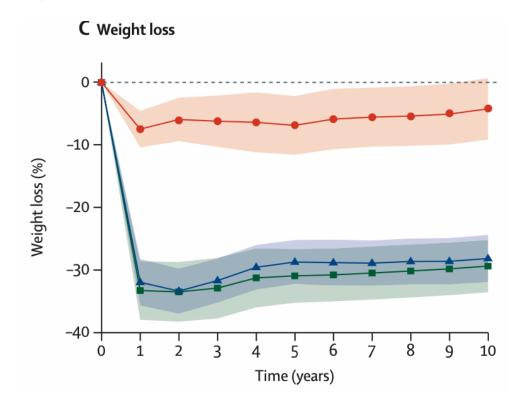
Sleeve Gastrectomy

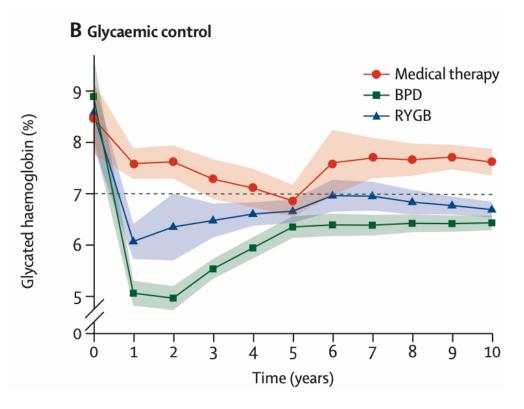
Adjustable Gastric Band


Improved HbA_{1c} over time with surgery


Remission (defined as $HbA_{1c} < 6.5\%$ without medications)

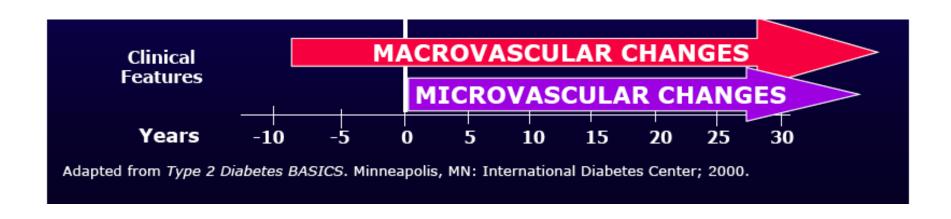
Diabetes Medication Use is Reduced in the Surgical Group


Greater Long-term Weight Loss with Surgery



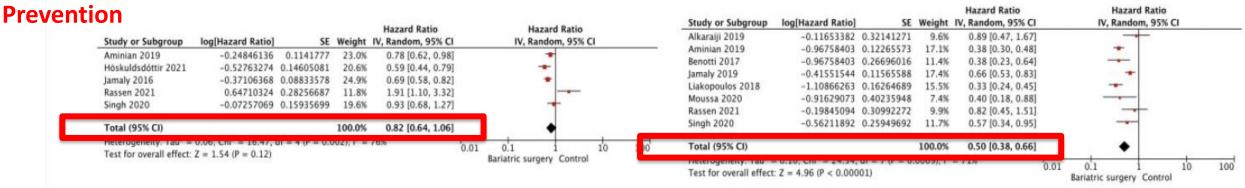
Metabolic surgery versus conventional medical therapy in patients with type 2 diabetes: 10-year follow-up of an open-label, single-centre, randomised controlled trial $_{N=60}$

www.thelancet.com Vol 397 January 23, 2021


Geltrude Mingrone, Simona Panunzi, Andrea De Gaetano, Caterina Guidone, Amerigo Iaconelli, Esmeralda Capristo, Ghassan Chamseddine, Stefan R Bornstein, Francesco Rubino

Decrease in Diabetes Medications with Surgery

What about the effect of surgery on Long-term Morbidity/ Mortality



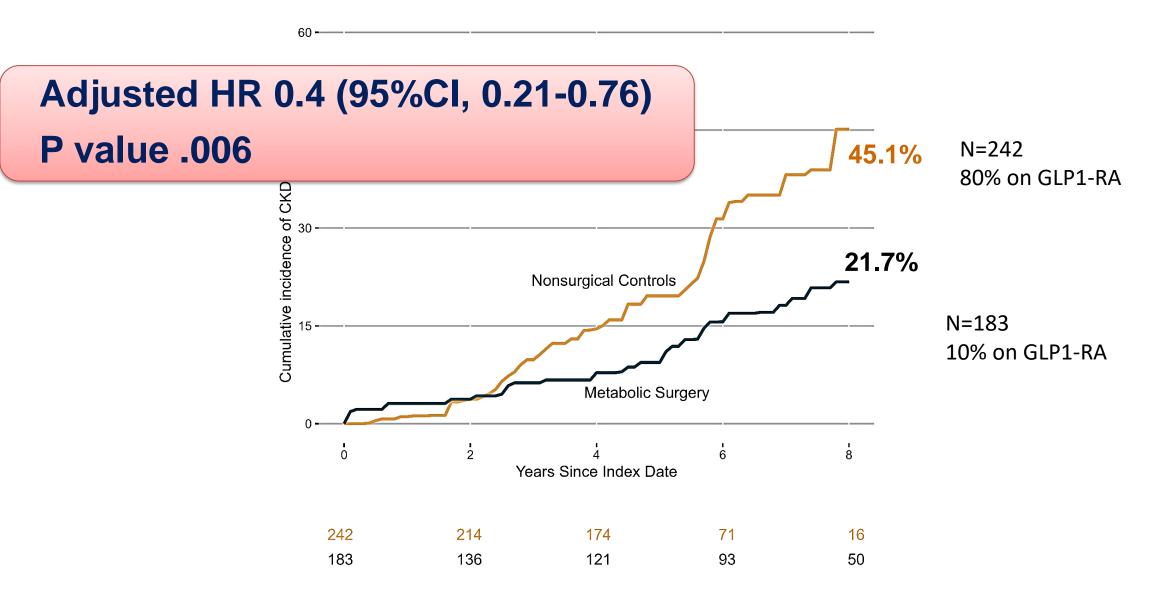
Metabolic Surgery Meta-analysis 2022 A.fib. HF. MI. CVA

N=39 Studies Primary A

Atrial fibrillation 18 % risk reduction

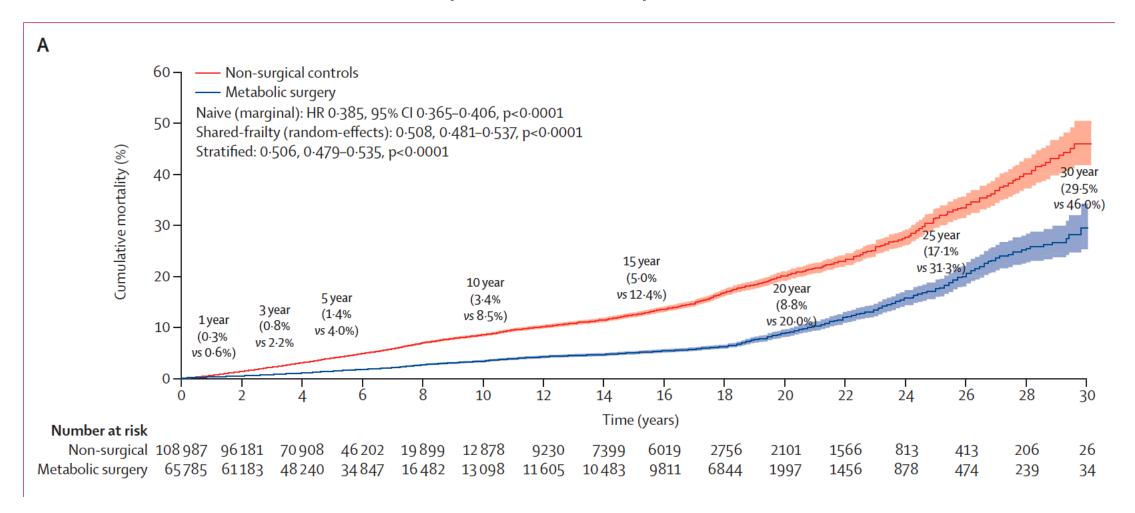
Heart failure 50% risk reduction

Myocardial infarction 42 % risk reduction D

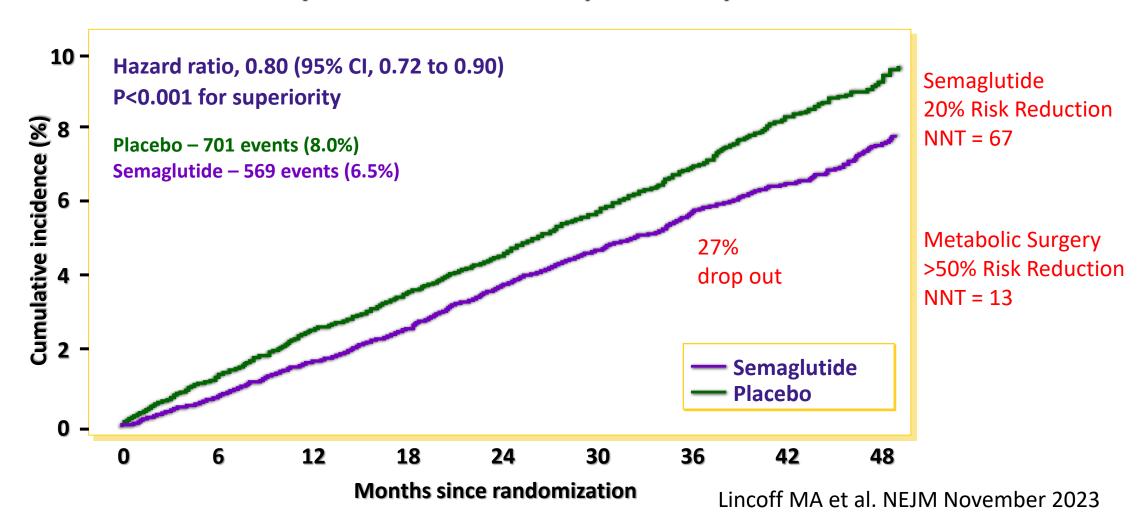

Stroke 36 % risk reduction

			Hazard Ratio	Hazard Ratio	Study or Subgroup	log[Hazard Ratio] SE	Weight	Hazard Ratio IV, Random, 95% CI	Hazard Ratio IV, Random, 95% CI
Study or Subgroup	log[Hazard Ratio]	SE Weight	IV, Random, 95% CI	IV, Random, 95% CI	Alkaraiji 2019	-0.13926207 0.44387755	3.6%	0.87 [0.36, 2.08]	
Alkaraiji 2019	-0.02020271 0.3028	84839 10.7%	0.98 [0.54, 1.77]	-	Aminian 2019	-0.40047757 0.11734694	14.1%	0.67 [0.53, 0.84]	*
Benotti 2017	-0.11653382 0.3938	85799 8.1%	0.89 [0.41, 1.93]	-	Benotti 2017	-0.31471075 0.18367347	10.7%	0.73 [0.51, 1.05]	-
Brown 2020	-0.94160854 0.046	65106 19.7%	0.39 [0.36, 0.43]	•	Brown 2020	-0.597837 0.02040816	17.8%	0.55 [0.53, 0.57]	
Liakopoulos 2018	-0.597837 0.1800	07301 15.3%	0.55 [0.39, 0.78]	-	Fisher 2018	-0.02020271 0.56377551	2.4%	0.98 [0.32, 2.96]	_
Lundberg 2021	-0.51082562 0.1948	83795 14.7%	0.60 [0.41, 0.88]		Liakopoulos 2018	-0.26136476 0.14285714	12.7%	0.77 [0.58, 1.02]	-
Moussa 2020	-0.89159812 0.1986	64014 14.6%	0.41 [0.28, 0.61]		Moussa 2021	-1.04982212 0.1122449	14.3%	0.35 [0.28, 0.44]	-
Sjöström 2012	-0.34249031 0.141	14058 16.9%	0.71 [0.54, 0.94]	-	Singh 2020	-0.02020271 0.20153061	9.9%	0.98 [0.66, 1.45]	+
Total (95% CI)		100.0%	0.58 [0.43, 0.76]		Sjöström 2012	-0.41551544 0.1122449	14.3%	0.66 [0.53, 0.82]	-
	- U.1U; Chi: = 32.32, df = 6	(P < 0.0001); T	- 8/2		Total (95% CI)		100.0%	0.64 [0.53, 0.77]	•
Test for overall effect	Z = 3.82 (P = 0.0001)		0.0	Bariatric surgery Control		= 0.05; Chi* = 39.46, df = 8 (P < 0 t: Z = 4.74 (P < 0.00001)	.00001); 1	= 80%	1 0.1 1 10 Bariatric surgery Control

Figure 3 Forest plot of pooled hazard ratios of atrial fibrillation, heart failure, myocardial infarction, and stroke. Cl, confidence interval; standard error.


European Heart Journal (2022) 43, 1955–1969

Primary End Point: CKD Progression


Aminian et al. Annals of Surgery 2024

49% Mortality Risk Reduction with Bariatric Surgery (n=174,772)

Syn NL et al. Lancet, May 2021

CV Death, Nonfatal MI, or Nonfatal Stroke Primary Cardiovascular Composite Endpoint

Medical Treatment Alone vs. Metabolic Surgery + Meds

Score Card per Philip Schauer MD

	Medical Alone	Metabolic Surgery + Medications	Winner
Short-term Wt. Loss	15%	30-35%	Metabolic Surgery + Meds
Long-term Wt. Loss	9% (4 yr)	25-30% (20+ yrs)	Metabolic Surgery + Meds
Effective in High BMI	Modest	Major	Metabolic Surgery + Meds
Short term Serious Adverse Events	<1%	3%	AOM's alone
Health-Related Quality of Life	Modest	Major	Metabolic Surgery + Meds
Steatohepatitis	Modest	Major	Metabolic Surgery + Meds
Cancer Reduction	?	17%	Metabolic Surgery + Meds
Long-term CV Benefit (MACE)	20% reduction	> 50% reduction	Metabolic Surgery + Meds
Long-term Mortality Benefit	19% reduction	45% reduction	Metabolic Surgery + Meds
Cost (including GLP1–RA's)	\$10,000/yr	\$1,500/yr +?	Metabolic Surgery + Meds

WELCOME TO THE ERA OF GLP1-RA'S

