Simultaneous versus Interval Sleeve Gastrectomy on Patients Requiring Left Ventricular Assist Devices as a Bridge to Heart Transplantation

Oscar A. Olavarria, MD MS

Assistant Professor of Surgery
Minimally Invasive Surgeon of Texas
University of Texas Medical School at Houston

Disclosures

Johnson & Johnson - Research

Practice Guideline > J Heart Lung Transplant. 2016 Jan;35(1):1-23.

doi: 10.1016/j.healun.2015.10.023.

The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: A 10-year update

Mandeep R Mehra, Charles E Canter, Margaret M Hannan, Marc J Semigran, Patricia A Uber, David A Baran, Lara Danziger-Isakov, James K Kirklin, Richard Kirk, Sudhir S Kushwaha, Lars H Lund, Luciano Potena, Heather J Ross, David O Taylor, Erik A M Verschuuren, Andreas Zuckermann; International Society for Heart Lung Transplantation (ISHLT) Infectious Diseases, Pediatric and Heart Failure and Transplantation Councils

Most heart transplant programs exclude patients with obesity (BMI >35 kg/m2)

Left ventricular assist device (LVAD)

Immobility

Limited ability to exercise

Depression

> Tex Heart Inst J. 2022 Jan 1;49(1):e207521. doi: 10.14503/THIJ-20-7521.

Left Ventricular Assist Device Support and Longitudinal Sleeve Gastrectomy Combined With Diet in Bridge to Heart Transplant

Mandy Ng ¹, Beverly Rodgers ¹, Saadiya Rehman ¹, Sriram S Nathan ², Kulvinder S Bajwa ³, Shinil K Shah ³, Bindu H Akkanti ⁴ ⁵, Marwan F Jumean ², Sachin Kumar ², Jennifer L Dressel ¹, Rajko Radovancevic ², Melissa M Felinski ³, Biswajit Kar ², Igor D Gregoric ²

Case Reports > J Heart Lung Transplant. 2015 Nov;34(11):1489-91. doi: 10.1016/j.healun.2015.06.011. Epub 2015 Jul 4.

Simultaneous left ventricular assist device placement and laparoscopic sleeve gastrectomy as a bridge to transplant for morbidly obese patients with severe heart failure

Shinil K Shah ¹, Igor D Gregoric ², Sriram S Nathan ², Bindu H Akkanti ³, Biswajit Kar ², Kulvinder S Bajwa ⁴; LVAD/Sleeve Gastrectomy Collaborative Group

Objective

Assess the safety of simultaneous sleeve gastrectomy at the time of LVAD placement

Rationale

- Simplify perioperative anticoagulation
- ↓ Time to transplant = ↓ LVAD complications
 - Driveline infections
 - Bleeding
 - Healthcare utilization

Methods

Single center, retrospective cohort study

Population

Inclusion criteria:

- Adult (>18 years old)
- Obesity (BMI ≥ 35 kg/m2)
- End stage heart failure requiring LVAD

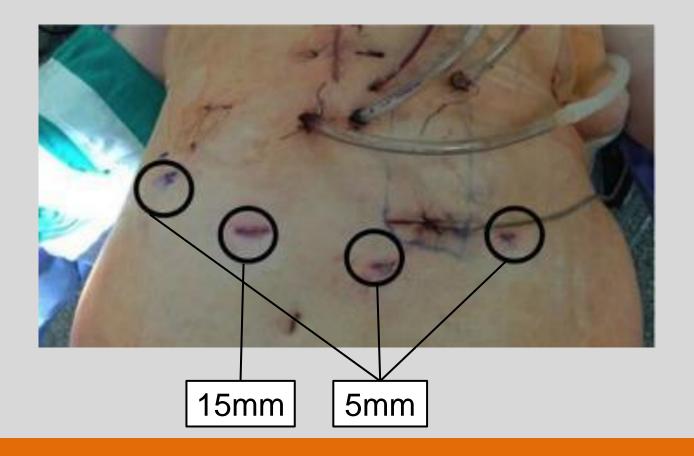
Population

Exclusion criteria:

- Revisional procedures
- Untreated severe psychiatric conditions
- Cirrhosis
- Pregnancy

Intervention and Control

Simultaneous LVAD/SG


Interval SG

Pre-operative Screening

- Psychological evaluation
- Nutritional labs
- Upper gastrointestinal series / EGD
- Nutritional counseling

Intraoperative Considerations

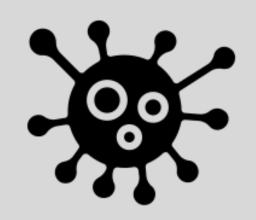
Post-operative Management

Stage	Duration	Diet
1	Days 1–3	Clear liquids only
2	Days 4–14	Full liquids; includes protein drinks, multivitamin, calcium citrate with vitamin D supplement, 60 g/d protein
3	Weeks 3–6	Puree; includes multivitamin, calcium citrate with vitamin D supplement, 60 g/d protein
4	Week 7 (maintenance)	Solid low-fat, low-carbohydrate; includes multivitamin, calcium citrate with vitamin D supplement, vitamin B12 supplement, 60 g/d protein

Post-operative Management

- Multimodal pain control
- Anticoagulation = 12 24 h after surgery
- No routine upper GI series

- Post-op bleeding
- Staple line leak
- Intraabdominal abscess
- Death

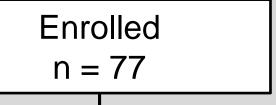

- Post-op bleeding
- Staple line leak
- Intraabdominal abscess
- Death

- Post-op bleeding
- Staple line leak
- Intraabdominal abscess
- Death

- Post-op bleeding
- Staple line leak
- Intraabdominal abscess
- Death

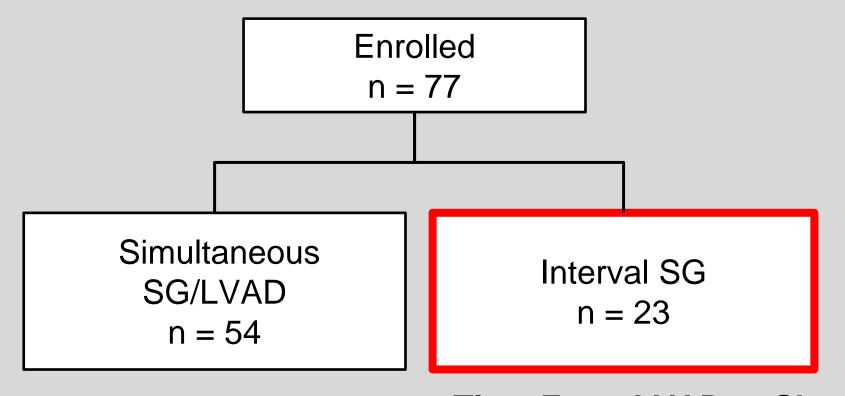
Secondary Outcomes

- Percent of patients with BMI ≤ 35
- Rate of transplantation
- · Unplanned readmission
- Unplanned reoperations
- Acute kidney injury (AKI)
- Post-operative transfusions
- Length of stay (LOS)
- Percent excess body weight loss (%EBWL)
- Percent total body weight loss (%TBWL)


Statistical Analysis Plan

Primary outcome:

Fisher's exact test


Secondary outcomes:

- Fisher's exact test
- T-test

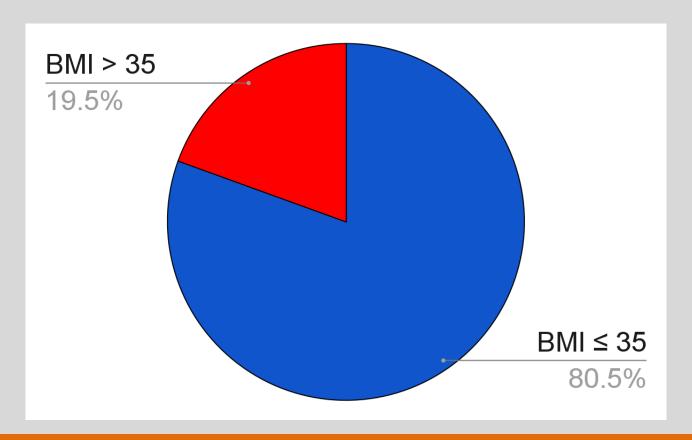
Simultaneous SG/LVAD n = 54

Interval SG n = 23

Time From LVAD -> Sleeve Median (IQR) = 18 (12.7) months

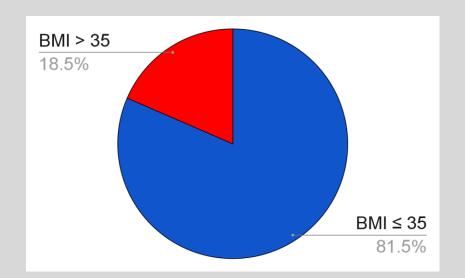
Baseline Characteristics

	Overall (N=77)	LVAD/SG (N=54)	Interval SG (N=23)	P-value
Age (yrs.), Mean (SD)	44.5 (11.3)	46.3 (11.7)	40.4 (9.6)	0.03
Sex-Male	62%	68%	48%	0.12
ASA Class ≥ 3	100%	100%	100%	1.00


	Overall (N=77)	LVAD/SG (N=54)	Interval SG (N=23)	P-value
Diabetes Mellitus	42%	43%	39%	0.81
HTN	73%	80%	57%	0.05
HLD	39%	46%	22%	0.07
CKD	31%	30%	35%	0.79
CVA	19%	20%	17%	1.00
Arrhythmia	35%	35%	35%	1.00
OSA	40%	46%	26%	0.13
BMI (kg/m²), Mean	44.7 (6.5)	45.1 (6.6)	43.8 (6.3)	0.42
(SD)				

	Overall (N=77)	LVAD/SG (N=54)	Interval SG (N=23)	P-value
Cause of heart failure				0.53
Ischemic	18%	20%	13%	
Non-ischemic	82%	80%	87%	
LVEF				0.50
< 20%	56%	59%	48%	
20 - 25%	35%	30%	48%	
25 - 30%	6%	7%	4%	
> 30%	3%	4%	0%	
Pulmonary HTN	30%	35%	17%	0.17

	LVAD/SG (N=54)	Interval SG (N=23)	OR (95% CI)	P- Value
SG complications (90d)	7.4%	17.4%	0.38 (0.09-1.67)	0.23

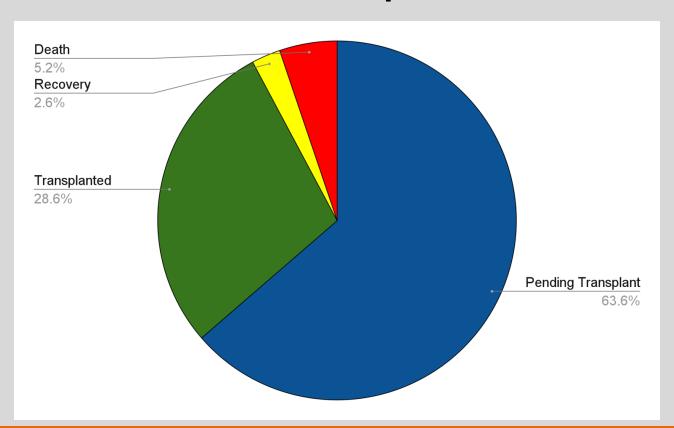


BMI ≤ 35



BMI ≤ 35

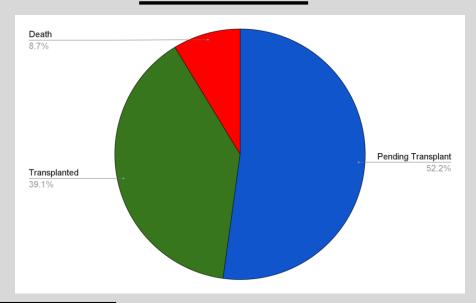
Simultaneous SG/LVAD



Interval SG

P = 0.76

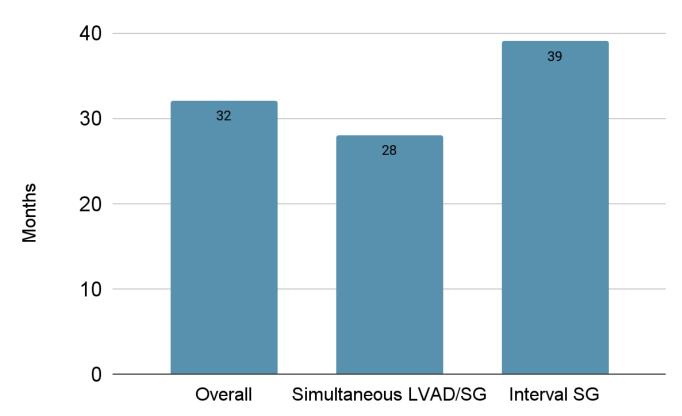
Rate of Transplantation



Rate of Transplantation

Simultaneous SG/LVAD

Death 3.7% Recovery 3.7% Transplanted 24.1%


Interval SG

P = 0.29

Pending Transplant

Time to Transplantation

P = 0.16

Secondary Outcomes

	LVAD/SG (N=54)	Interval SG (N=23)	OR (95% CI)	P- Value
Readmission	36 (66.6%)	14 (60.9%)	1.29 (0.47 to 3.53)	0.79
Reoperations	16 (29.6%)	7 (30.4%)	0.96 (0.33 to 2.79)	1.00
AKI	39 (72.2%)	13 (56.6%)	2.00 (0.72 to 5.52)	0.19
Transfusions	21 (38.9%)	16 (69.6%)	0.28 (0.10 to 0.79)	0.02
LOS, Mean (SD)	19 (15-27)	21 (18-26)	-	0.52
%EBWL, Mean (SD)	53 (26)	58 (23)	-	0.49
%TBWL, Mean (SD)	27 (14)	26 (13)	-	0.71

Limitations

- Procedural trend
- Small number of patients

Conclusion

- Sleeve gastrectomy increases patient candidacy for transplantation
- Simultaneous LVAD/SG is safe

Simultaneous versus Interval Sleeve Gastrectomy on Patients Requiring Left Ventricular Assist Devices as a Bridge to Heart Transplantation

Oscar A. Olavarria, MD MS

Assistant Professor of Surgery
Minimally Invasive Surgeon of Texas
University of Texas Medical School at Houston

