WGO – Obesity and liver disease

IFSC

NAPOLI 2023

Nutritional interventions in patients with liver disease and obesity

Violeta Moizé, RDN, PhD. Hospital Clinic Barcelona SECO and IFSO IH-EC Representative <u>vmoize@clinic.cat</u>

I have no potential conflict of interest to report

Introduction

Progression of nonalcoholic fatty liver disease

- Nutrition and dietary interventions are a central component in the pathophysiology, but also a cornerstone in the management of patients with non-alcoholic fatty liver disease (NAFLD).
- Balanced levels of dietary macronutrients and micronutrients can act to slow or halt the progression of NAFLD.

An imbalance can contribute to the pathogenesis and progression of NAFLD.

Estes C, et al. Journal of Hepatology 2018;69(4):896–904.

Impact of key dietary nutrients on molecular mediators that orchestrate the core NAFLD pathobiological pathways.

New nomenclature - will be changed soon.

- Steatotic Liver Disease (SLD),
- Metabolic Dysfunctionassociated Steatotic Liver Disease (MASLD)

Chakravarthy MV et al. Gastroenterol Clin North Am. 2020 ;49(1):63-94. doi: 10.1016/j.gtc.2019.09.003.

Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis

<u>_</u>	52 \	weeks of lifesty	le intervention	\rightarrow
% Weight loss (WL)		5%	7%	10%
NASH-resolution	10%	26%	64%	90%
FIBROSIS-regression	45%	38%	50%	81%
STEATOSIS improvement	35%	65%	76%	100%
% Patients achieving WL	70%	12%	9%	10%

IFSO

NAPOLI

2023

Correlation between weight-loss percentage and improvement of different histologic parameters related to NASH.

Vilar-Gomez E et al. Gastroenterology 2015

EASL-EASD-EASO Clinical Practice Guidelines 2016

Long-term adherence to a Mediterranean diet supplemented with EVOO is associated with a lower prevalence of NAFLD compared with a similar diet supplemented with nuts or a control diet with a lower fat content - PREDIMED steatosis substudy.

Explore the associations with liver steatosis of 3 different diets: a MedDiet + extra-virgin olive oil (EVOO), Med Diet + nuts, or a control diet.

	MedDiet + EV00	MedDiet + nuts	MedDiet + nuts Control diet		MedDiet + nuts Control diet	
	(<i>n</i> = 34)	(<i>n</i> = 36)	(<i>n</i> = 30)	Р		
Liver fat, %	1.2 [0-4.4]	2.7 [0.2–11.0]	4.1 [0.6–10.4]	0.068		
Steatosis, ² n(%)	3 (8.8) ^a	12 (33.3) ^b	10 (33.3) ^b	0.027		
Serum hs-CRP, mg/dL	0.22 [0.13–0.43]	0.18 [0.12–0.31]	0.19 [0.14–0.35]	0.646		
Plasma HbA1c, %	6.1 [5.7–6.6] ^a	6.4 [5.9–7.2] ^b	5.8 [5.4–6.5] ^a	0.015		
Serum fasting insulin, mU/L	12.8 [8.7–18.6]	12.7 [9.0–26.8]	12.3 [7.3–21.1]	0.794		
HOMA-IR	3.8 [2.6–5.1]	3.7 [2.4–7.3]	3.5 [1.8–7.2]	0.636		
Serum nitrites $+$ nitrates, μ M	25.1 [19.4–32.0]	28.1 [20.3–39.2]	21.5 [16.1–32.4]	0.223		
Serum 3-nitrotyrosine, nM	15.3 [13.0–20.0]	15.2 [12.2–22.0]	14.9 [11.7–16.8]	0.694		
FRAP, mEq quercetin	60.9 [55.7–72.4]	57.9 [53.6-80.9]	57.5 [52.0–62.2]	0.266		
Urine 12-HETE/creatinine, ng/mg	2.3 [1.4–3.8] ^a	5.0 [3.3–11.6] ^b	3.9 [1.6–7.2] ^b	0.001		
Plasma ALT, U/L	19.2 [16.6–28.4]	26.0 [19.8–36.5]	22.8 [17.1–38.1]	0.271		

Overfeeding Polyunsaturated and Saturated Fat Causes Distinct Effects on Liver and Visceral Fat Accumulation in Humans

Table 2-Liver fat an	nd body composition	before and aft	er 7 weeks of PUF/	A or SFA overe	ating	
	PUFA (n = 18) baseline	Mean absolute change	SFA (n = 19) baseline	Mean absolute change	Mean difference in change (95% CI)	P value
Body weight, kg	67.4 ± 8.2	1.6 ± 0.85	63.3 ± 6.8	1.6 ± 0.96	-0.02 (-0.63 to 0.58)	0.94
BMI, kg/m ²	20.8 (19.5-23.1)	0.5 ± 0.3	19.9 (18.9-20.7)	0.5 ± 0.3	0.01 (-0.18 to 0.20)	0.98
Waist girth, cm	79.4 ± 5.6	0.97 ± 2.2	76.1 ± 5.1	1.0 ± 2.3	-0.03 (-1.53 to 1.47)	0.97

The SFAs markedly increased liver fat compared with PUFAs and caused a twofold increase in visceral fat compared to PUFAs.

IFSC

NAPOLI

Fredrik Rosqvist et al. Diabetes 2014;63:2356–2368 | DOI: 10.2337/db13-1622023

Liver Fat Is Reduced by an Isoenergetic MUFA Diet in a RCT (8w intervention) in patients with Type 2 Diabetes

CUO/Ghan

CUO/Ghana Era

MITTEA

MITTA

Baseline 85 ± 13 03 ± 6 57 ± 38 37 ± 8 98 ± 29 10 ± 68 37 ± 15 18 ± 5 22 ± 8 6.3 ± 0.3 17 ± 8 4.8 ± 1.8 16 ± 4 7.7 ± 9.7 × time effect	End 85 ± 13 104 ± 6 164 ± 46 37 ± 7 107 ± 40 131 ± 106 138 ± 25 20 ± 5 23 ± 6 6.3 ± 0.4 16 ± 5 5.2 ± 1.2 16 ± 4 16.1 ± 6.8 by repeated-me	Baseline 79 ± 13 100 ± 8 167 ± 25 35 ± 6 110 ± 20 122 ± 37 145 ± 37 21 ± 13 34 ± 34 6.6 ± 0.8 11 ± 6 3.6 ± 1.5 15 ± 3 7.4 ± 2.8 surves ANOV2	End 79 ± 13 99 ± 8 166 ± 23 36 ± 4 109 ± 21 114 ± 33 141 ± 21 21 ± 8 30 ± 17 $6.2 \pm 0.7^*$ 11 ± 5 3.9 ± 2.0 15 ± 4 $5.2 \pm 2.7^*$ $x^*P < 0.05$ vs.	Baseline 83 ± 13 101 ± 8 175 ± 39 44 ± 11 116 ± 36 90 ± 26 133 ± 27 20 ± 11 26 ± 22 6.5 ± 0.7 16 ± 6 5.1 ± 1.6 14 ± 4 8.8 ± 4.9 baseline: $3P \leq 3P$	End 83 ± 13 101 ± 8 176 ± 36 49 ± 21 121 ± 35 100 ± 30 142 ± 32 18 ± 5 24 ± 13 6.5 ± 0.8 16 ± 8 5.4 ± 2.9 14 ± 4 8.9 ± 5.7 0.05 vs. MUE	Baseline 87 ± 13 104 ± 11 171 ± 37 40 ± 7 110 ± 29 126 ± 104 136 ± 15 19 ± 3 28 ± 8 6.9 ± 0.6 12 ± 3 4.2 ± 1.2 17 ± 2 11.6 ± 8.0	End 87 ± 13 103 ± 10 168 ± 39 39 ± 6 111 ± 30 102 ± 70 143 ± 31 $17 \pm 3^*$ 25 ± 6 6.8 ± 0.5 11 ± 3 4.0 ± 1.6 $18 \pm 2^*$ $9.1 \pm 7.4^*$
85 ± 13 03 ± 6 57 ± 38 37 ± 8 98 ± 29 10 ± 68 37 ± 15 18 ± 5 22 ± 8 6.3 ± 0.3 17 ± 8 4.8 ± 1.8 16 ± 4 $7.7 \pm 9.7 \ddagger$ × tume effect	85 ± 13 104 ± 6 164 ± 46 37 ± 7 107 ± 40 131 ± 106 138 ± 25 20 ± 5 23 ± 6 6.3 ± 0.4 16 ± 5 5.2 ± 1.2 16 ± 4 16.1 ± 6.8 by repeated-me	79 ± 13 100 ± 8 167 ± 25 35 ± 6 110 ± 20 122 ± 37 145 ± 37 21 ± 13 34 ± 34 6.6 ± 0.8 11 ± 6 3.6 ± 1.5 15 ± 3 7.4 ± 2.8 surves ANOVARY	79 ± 13 99 ± 8 166 ± 23 36 ± 4 109 ± 21 114 ± 33 141 ± 21 21 ± 8 30 ± 17 $6.2 \pm 0.7^{*}$ 11 ± 5 3.9 ± 2.0 15 ± 4 $5.2 \pm 2.7^{*}$ $x^{*}P < 0.05 \text{ vs.}$	83 ± 13 101 ± 8 175 ± 39 44 ± 11 116 ± 36 90 ± 26 133 ± 27 20 ± 11 26 ± 22 6.5 ± 0.7 16 ± 6 5.1 ± 1.6 14 ± 4 8.8 ± 4.9 Dascinc: 2P <	83 ± 13 101 ± 8 176 ± 36 49 ± 21 121 ± 35 100 ± 30 142 ± 32 18 ± 5 24 ± 13 6.5 ± 0.8 16 ± 8 5.4 ± 2.9 14 ± 4 8.9 ± 5.7	87 ± 13 104 ± 11 171 ± 37 40 ± 7 110 ± 29 126 ± 104 136 ± 15 19 ± 3 28 ± 8 6.9 ± 0.6 12 ± 3 4.2 ± 1.2 17 ± 2 11.6 ± 8.0 Description value	87 ± 13 103 ± 10 168 ± 39 39 ± 6 111 ± 30 102 ± 70 143 ± 31 $17 \pm 3^*$ 25 ± 6 6.8 ± 0.5 11 ± 3 4.0 ± 1.6 $18 \pm 2^*$ 9.1 ± 7.4
$\begin{array}{l} 03 \pm 6 \\ 57 \pm 38 \\ 37 \pm 8 \\ 98 \pm 29 \\ 10 \pm 68 \\ 37 \pm 15 \\ 18 \pm 5 \\ 22 \pm 8 \\ 5.3 \pm 0.3 \\ 17 \pm 8 \\ 4.8 \pm 1.8 \\ 16 \pm 4 \\ 7.7 \pm 9.7 \\ \star \text{ time effect} \end{array}$	104 ± 6 164 ± 46 37 ± 7 107 ± 40 131 ± 106 138 ± 25 20 ± 5 23 ± 6 6.3 ± 0.4 16 ± 5 5.2 ± 1.2 16 ± 4 16.1 ± 6.8 by repeated-me	$100 \pm 8 \\ 167 \pm 25 \\ 35 \pm 6 \\ 110 \pm 20 \\ 122 \pm 37 \\ 145 \pm 37 \\ 21 \pm 13 \\ 34 \pm 34 \\ 6.6 \pm 0.8 \\ 11 \pm 6 \\ 3.6 \pm 1.5 \\ 15 \pm 3 \\ 7.4 \pm 2.8 \\ sures ANOV2$	99 ± 8 166 ± 23 36 ± 4 109 ± 21 114 ± 33 141 ± 21 21 ± 8 30 ± 17 $6.2 \pm 0.7^{*}$ 11 ± 5 3.9 ± 2.0 15 ± 4 $5.2 \pm 2.7^{*}$ $x^{*}P < 0.05 \text{ vs.}$	101 ± 8 175 ± 39 44 ± 11 116 ± 36 90 ± 26 133 ± 27 20 ± 11 26 ± 22 6.5 ± 0.7 16 ± 6 5.1 ± 1.6 14 ± 4 8.8 ± 4.9 Dascline: $2P \le 2$	101 ± 8 176 ± 36 49 ± 21 121 ± 35 100 ± 30 142 ± 32 18 ± 5 24 ± 13 6.5 ± 0.8 16 ± 8 5.4 ± 2.9 14 ± 4 8.9 ± 5.7 0.05 vs. MUE	$104 \pm 11 \\ 171 \pm 37 \\ 40 \pm 7 \\ 110 \pm 29 \\ 126 \pm 104 \\ 136 \pm 15 \\ 19 \pm 3 \\ 28 \pm 8 \\ 6.9 \pm 0.6 \\ 12 \pm 3 \\ 4.2 \pm 1.2 \\ 17 \pm 2 \\ 11.6 \pm 8.0 \\ assume value \\ baseline value \\ assume value \\ baseline value \\ baseli$	$103 \pm 10 \\ 168 \pm 39 \\ 39 \pm 6 \\ 111 \pm 30 \\ 102 \pm 70 \\ 143 \pm 31 \\ 17 \pm 3^* \\ 25 \pm 6 \\ 6.8 \pm 0.5 \\ 11 \pm 3 \\ 4.0 \pm 1.6 \\ 18 \pm 2^* \\ 9.1 \pm 7.4 \\ \end{array}$
57 ± 38 37 ± 8 98 ± 29 10 ± 68 37 ± 15 18 ± 5 22 ± 8 6.3 ± 0.3 17 ± 8 4.8 ± 1.8 16 ± 4 7.7 ± 9.7 × tune effect	$164 \pm 46 37 \pm 7 107 \pm 40 131 \pm 106 138 \pm 25 20 \pm 5 23 \pm 6 6.3 \pm 0.4 16 \pm 5 5.2 \pm 1.2 16 \pm 4 16.1 \pm 6.8 by repeated-me$	$167 \pm 25 \\ 35 \pm 6 \\ 110 \pm 20 \\ 122 \pm 37 \\ 145 \pm 37 \\ 21 \pm 13 \\ 34 \pm 34 \\ 6.6 \pm 0.8 \\ 11 \pm 6 \\ 3.6 \pm 1.5 \\ 15 \pm 3 \\ 7.4 \pm 2.8 \\ sures ANOV2$	$166 \pm 23 \\ 36 \pm 4 \\ 109 \pm 21 \\ 114 \pm 33 \\ 141 \pm 21 \\ 21 \pm 8 \\ 30 \pm 17 \\ 6.2 \pm 0.7^* \\ 11 \pm 5 \\ 3.9 \pm 2.0 \\ 15 \pm 4 \\ 5.2 \pm 2.7^* \\ x^* P < 0.05 \text{ vs.}$	$175 \pm 39 \\ 44 \pm 11 \\ 116 \pm 36 \\ 90 \pm 26 \\ 133 \pm 27 \\ 20 \pm 11 \\ 26 \pm 22 \\ 6.5 \pm 0.7 \\ 16 \pm 6 \\ 5.1 \pm 1.6 \\ 14 \pm 4 \\ 8.8 \pm 4.9 \\ 148$	176 ± 36 49 ± 21 121 ± 35 100 ± 30 142 ± 32 18 ± 5 24 ± 13 6.5 ± 0.8 16 ± 8 5.4 ± 2.9 14 ± 4 8.9 ± 5.7 0.05 vs. MUE	$171 \pm 37 40 \pm 7 110 \pm 29 126 \pm 104 136 \pm 15 19 \pm 3 28 \pm 8 6.9 \pm 0.6 12 \pm 3 4.2 \pm 1.2 17 \pm 2 11.6 \pm 8.0 Descrine value$	$168 \pm 39 \\ 39 \pm 6 \\ 111 \pm 30 \\ 102 \pm 70 \\ 143 \pm 31 \\ 17 \pm 3^* \\ 25 \pm 6 \\ 6.8 \pm 0.5 \\ 11 \pm 3 \\ 4.0 \pm 1.6 \\ 18 \pm 2^* \\ 9.1 \pm 7.4 \\ \end{array}$
$37 \pm 8 \\ 98 \pm 29 \\ 10 \pm 68 \\ 37 \pm 15 \\ 18 \pm 5 \\ 22 \pm 8 \\ 6.3 \pm 0.3 \\ 17 \pm 8 \\ 4.8 \pm 1.8 \\ 16 \pm 4 \\ 7.7 \pm 9.7 \ddagger$ × time effect	37 ± 7 107 ± 40 131 ± 106 138 ± 25 20 ± 5 23 ± 6 6.3 ± 0.4 16 ± 5 5.2 ± 1.2 16 ± 4 16.1 ± 6.8 by repeated-me	35 ± 6 110 ± 20 122 ± 37 145 ± 37 21 ± 13 34 ± 34 6.6 ± 0.8 11 ± 6 3.6 ± 1.5 15 ± 3 7.4 ± 2.8 sures ANOVA	36 ± 4 109 ± 21 114 ± 33 141 ± 21 21 ± 8 30 ± 17 $6.2 \pm 0.7^{*}$ 11 ± 5 3.9 ± 2.0 15 ± 4 $5.2 \pm 2.7^{*}$ $x^{*}P < 0.05 \text{ vs.}$	44 ± 11 116 ± 36 90 ± 26 133 ± 27 20 ± 11 26 ± 22 6.5 ± 0.7 16 ± 6 5.1 ± 1.6 14 ± 4 8.8 ± 4.9 Dascinc: 2P <	49 ± 21 121 ± 35 100 ± 30 142 ± 32 18 ± 5 24 ± 13 6.5 ± 0.8 16 ± 8 5.4 ± 2.9 14 ± 4 8.9 ± 5.7 $0.05 \text{ vs. MUE}.$	40 ± 7 110 ± 29 126 ± 104 136 ± 15 19 ± 3 28 ± 8 6.9 ± 0.6 12 ± 3 4.2 ± 1.2 17 ± 2 11.6 ± 8.0 Description value	39 ± 6 111 ± 30 102 ± 70 143 ± 31 $17 \pm 3^*$ 25 ± 6 6.8 ± 0.5 11 ± 3 4.0 ± 1.6 $18 \pm 2^*$ 9.1 ± 7.4
98 ± 29 10 ± 68 37 ± 15 18 ± 5 22 ± 8 6.3 ± 0.3 17 ± 8 4.8 ± 1.8 16 ± 4 $7.7 \pm 9.7 \ddagger$ × tume effect	107 ± 40 131 ± 106 138 ± 25 20 ± 5 23 ± 6 6.3 ± 0.4 16 ± 5 5.2 ± 1.2 16 ± 4 16.1 ± 6.8 by repeated-me	$110 \pm 20 \\ 122 \pm 37 \\ 145 \pm 37 \\ 21 \pm 13 \\ 34 \pm 34 \\ 6.6 \pm 0.8 \\ 11 \pm 6 \\ 3.6 \pm 1.5 \\ 15 \pm 3 \\ 7.4 \pm 2.8 \\ sures ANOV2$	109 ± 21 114 ± 33 141 ± 21 21 ± 8 30 ± 17 $6.2 \pm 0.7^{*}$ 11 ± 5 3.9 ± 2.0 15 ± 4 $5.2 \pm 2.7^{*}$ $x, *P < 0.05 \text{ vs.}$	$116 \pm 3690 \pm 26133 \pm 2720 \pm 1126 \pm 226.5 \pm 0.716 \pm 65.1 \pm 1.614 \pm 48.8 \pm 4.9Dascline: 3P <$	121 ± 35 100 ± 30 142 ± 32 18 ± 5 24 ± 13 6.5 ± 0.8 16 ± 8 5.4 ± 2.9 14 ± 4 8.9 ± 5.7 0.05 vs. MUE	110 ± 29 126 ± 104 136 ± 15 19 ± 3 28 ± 8 6.9 ± 0.6 12 ± 3 4.2 ± 1.2 17 ± 2 11.6 ± 8.0 Description value	$111 \pm 30 \\ 102 \pm 70 \\ 143 \pm 31 \\ 17 \pm 3^* \\ 25 \pm 6 \\ 6.8 \pm 0.5 \\ 11 \pm 3 \\ 4.0 \pm 1.6 \\ 18 \pm 2^* \\ 9.1 \pm 7.4 \\ \end{cases}$
$10 \pm 68 \\ 37 \pm 15 \\ 18 \pm 5 \\ 22 \pm 8 \\ 6.3 \pm 0.3 \\ 17 \pm 8 \\ 4.8 \pm 1.8 \\ 16 \pm 4 \\ 7.7 \pm 9.7 \\ \pm \\ \times \text{ tume effect}$	$131 \pm 106 \\ 138 \pm 25 \\ 20 \pm 5 \\ 23 \pm 6 \\ 6.3 \pm 0.4 \\ 16 \pm 5 \\ 5.2 \pm 1.2 \\ 16 \pm 4 \\ 16.1 \pm 6.8 \\ \text{by repeated-metric}$	$122 \pm 37 \\ 145 \pm 37 \\ 21 \pm 13 \\ 34 \pm 34 \\ 6.6 \pm 0.8 \\ 11 \pm 6 \\ 3.6 \pm 1.5 \\ 15 \pm 3 \\ 7.4 \pm 2.8 \\ sures ANOV2$	$114 \pm 33 \\ 141 \pm 21 \\ 21 \pm 8 \\ 30 \pm 17 \\ 6.2 \pm 0.7^* \\ 11 \pm 5 \\ 3.9 \pm 2.0 \\ 15 \pm 4 \\ 5.2 \pm 2.7^* \\ 3.7 + P < 0.05 \text{ vs.}$	$90 \pm 26 \\ 133 \pm 27 \\ 20 \pm 11 \\ 26 \pm 22 \\ 6.5 \pm 0.7 \\ 16 \pm 6 \\ 5.1 \pm 1.6 \\ 14 \pm 4 \\ 8.8 \pm 4.9 \\ 14 + 4 \\ 8.8 \pm 4.9 \\ 14 + 4 \\ 14$	$100 \pm 30 \\ 142 \pm 32 \\ 18 \pm 5 \\ 24 \pm 13 \\ 6.5 \pm 0.8 \\ 16 \pm 8 \\ 5.4 \pm 2.9 \\ 14 \pm 4 \\ 8.9 \pm 5.7 \\ 0.05 \text{ vs. MUE}.$	$126 \pm 104 \\ 136 \pm 15 \\ 19 \pm 3 \\ 28 \pm 8 \\ 6.9 \pm 0.6 \\ 12 \pm 3 \\ 4.2 \pm 1.2 \\ 17 \pm 2 \\ 11.6 \pm 8.0 \\ assume value$	$102 \pm 70 \\ 143 \pm 31 \\ 17 \pm 3^* \\ 25 \pm 6 \\ 6.8 \pm 0.5 \\ 11 \pm 3 \\ 4.0 \pm 1.6 \\ 18 \pm 2^* \\ 9.1 \pm 7.4 \\ \end{array}$
$37 \pm 15 \\ 18 \pm 5 \\ 22 \pm 8 \\ 5.3 \pm 0.3 \\ 17 \pm 8 \\ 4.8 \pm 1.8 \\ 16 \pm 4 \\ 7.7 \pm 9.7 \\ \pm \\ \times \text{ time effect}$	138 ± 25 20 ± 5 23 ± 6 6.3 ± 0.4 16 ± 5 5.2 ± 1.2 16 ± 4 16.1 ± 6.8 by repeated-me	$145 \pm 37 \\ 21 \pm 13 \\ 34 \pm 34 \\ 6.6 \pm 0.8 \\ 11 \pm 6 \\ 3.6 \pm 1.5 \\ 15 \pm 3 \\ 7.4 \pm 2.8 \\ sures ANOV2$	$141 \pm 21 21 \pm 8 30 \pm 17 6.2 \pm 0.7^* 11 \pm 5 3.9 \pm 2.0 15 \pm 4 5.2 \pm 2.7^* x_{1}^{*}P < 0.05 \text{ vs.}$	$133 \pm 27 20 \pm 11 26 \pm 22 6.5 \pm 0.7 16 \pm 6 5.1 \pm 1.6 14 \pm 4 8.8 \pm 4.9 Dascline: 3P <$	$142 \pm 32 \\ 18 \pm 5 \\ 24 \pm 13 \\ 6.5 \pm 0.8 \\ 16 \pm 8 \\ 5.4 \pm 2.9 \\ 14 \pm 4 \\ 8.9 \pm 5.7 \\ 0.05 \text{ vs. MUE}.$	$136 \pm 15 \\ 19 \pm 3 \\ 28 \pm 8 \\ 6.9 \pm 0.6 \\ 12 \pm 3 \\ 4.2 \pm 1.2 \\ 17 \pm 2 \\ 11.6 \pm 8.0 \\ Daseline value$	$143 \pm 31 \\ 17 \pm 3^* \\ 25 \pm 6 \\ 6.8 \pm 0.5 \\ 11 \pm 3 \\ 4.0 \pm 1.6 \\ 18 \pm 2^* \\ 9.1 \pm 7.4 \\ \end{cases}$
18 ± 5 22 ± 8 6.3 ± 0.3 17 ± 8 4.8 ± 1.8 16 ± 4 $7.7 \pm 9.7 \ddagger$ × time effect	20 ± 5 23 ± 6 6.3 ± 0.4 16 ± 5 5.2 ± 1.2 16 ± 4 16.1 ± 6.8 by repeated-me	21 ± 13 34 ± 34 6.6 ± 0.8 11 ± 6 3.6 ± 1.5 15 ± 3 7.4 ± 2.8 sures ANOV2	21 ± 8 30 ± 17 $6.2 \pm 0.7^{*}$ 11 ± 5 3.9 ± 2.0 15 ± 4 $5.2 \pm 2.7^{*}$ x, P < 0.05 vs.	$20 \pm 11 \\ 26 \pm 22 \\ 6.5 \pm 0.7 \\ 16 \pm 6 \\ 5.1 \pm 1.6 \\ 14 \pm 4 \\ 8.8 \pm 4.9 \\ \text{baseline: } 2P \le 2$	18 ± 5 24 ± 13 6.5 ± 0.8 16 ± 8 5.4 ± 2.9 14 ± 4 8.9 ± 5.7 0.05 vs. MUE	$19 \pm 3 \\ 28 \pm 8 \\ 6.9 \pm 0.6 \\ 12 \pm 3 \\ 4.2 \pm 1.2 \\ 17 \pm 2 \\ 11.6 \pm 8.0 \\ Daseline value$	$17 \pm 3^{*}$ 25 ± 6 6.8 ± 0.5 11 ± 3 4.0 ± 1.6 $18 \pm 2^{*}$ 9.1 ± 7.4
$22 \pm 8 \\ 5.3 \pm 0.3 \\ 17 \pm 8 \\ 4.8 \pm 1.8 \\ 16 \pm 4 \\ 7.7 \pm 9.7 \\ \pm \\ \times \text{ time effect}$	23 ± 6 6.3 ± 0.4 16 ± 5 5.2 ± 1.2 16 ± 4 16.1 ± 6.8 by repeated-me	34 ± 34 6.6 ± 0.8 11 ± 6 3.6 ± 1.5 15 ± 3 7.4 ± 2.8 isures ANOV2	$30 \pm 17 6.2 \pm 0.7^* 11 \pm 5 3.9 \pm 2.0 15 \pm 4 5.2 \pm 2.7^* x_{1}^{2} + y_{1}^{2} < 0.05 \text{ vs.}$	26 ± 22 6.5 ± 0.7 16 ± 6 5.1 ± 1.6 14 ± 4 8.8 ± 4.9 baseline: $2P \le 2$	24 ± 13 6.5 ± 0.8 16 ± 8 5.4 ± 2.9 14 ± 4 8.9 ± 5.7 0.05 vs. MUE	$28 \pm 8 \\ 6.9 \pm 0.6 \\ 12 \pm 3 \\ 4.2 \pm 1.2 \\ 17 \pm 2 \\ 11.6 \pm 8.0 \\ assume value \\ baseline value \\ assume value \\ baseline val$	$25 \pm 6 \\ 6.8 \pm 0.5 \\ 11 \pm 3 \\ 4.0 \pm 1.6 \\ 18 \pm 2^* \\ 9.1 \pm 7.4 \\ \end{cases}$
6.3 ± 0.3 17 ± 8 4.8 ± 1.8 16 ± 4 $7.7 \pm 9.7 \pm$ × time effect	6.3 ± 0.4 16 ± 5 5.2 ± 1.2 16 ± 4 16.1 ± 6.8 by repeated-me	6.6 ± 0.8 11 ± 6 3.6 ± 1.5 15 ± 3 7.4 ± 2.8 ISURES ANOVE	$6.2 \pm 0.7^{*}$ 11 ± 5 3.9 ± 2.0 15 ± 4 $5.2 \pm 2.7^{*}$ $x^{*}P < 0.05 \text{ vs.}$	6.5 ± 0.7 16 ± 6 5.1 ± 1.6 14 ± 4 8.8 ± 4.9 Daseline: $P \leq 100$	$6.5 \pm 0.8 \\ 16 \pm 8 \\ 5.4 \pm 2.9 \\ 14 \pm 4 \\ 8.9 \pm 5.7 \\ 0.05 \text{ vs. MUE}.$	6.9 ± 0.6 12 ± 3 4.2 ± 1.2 17 ± 2 11.6 ± 8.0 Description value	6.8 ± 0.5 11 ± 3 4.0 ± 1.6 $18 \pm 2^*$ 9.1 ± 7.4
17 ± 8 4.8 ± 1.8 16 ± 4 7.7 ± 9.7‡ × tume effect	16 ± 5 5.2 ± 1.2 16 ± 4 16.1 ± 6.8 by repeated-me	11 ± 6 3.6 ± 1.5 15 ± 3 7.4 ± 2.8 sures ANOVA	11 ± 5 3.9 ± 2.0 15 ± 4 $5.2 \pm 2.7^*$ $x_1^* P < 0.05$ vs.	16 ± 6 5.1 ± 1.6 14 ± 4 8.8 ± 4.9 baseline: $2P \le 10^{-1}$	16 ± 8 5.4 ± 2.9 14 ± 4 8.9 ± 5.7 0.05 vs. MUE	12 ± 3 4.2 ± 1.2 17 ± 2 11.6 ± 8.0 Description value	11 ± 3 4.0 ± 1.6 18 ± 2* 9.1 ± 7.4
4.8 ± 1.8 16 ± 4 7.7 ± 9.7‡ × time effect	5.2 ± 1.2 16 ± 4 16.1 ± 6.8 by repeated-me	3.6 ± 1.5 15 ± 3 7.4 ± 2.8 isures ANOV?	3.9 ± 2.0 15 ± 4 $5.2 \pm 2.7*$ 3.7 ± 0.05 vs.	5.1 ± 1.6 14 ± 4 8.8 ± 4.9 baseline: $IP \leq 100$	5.4 ± 2.9 14 ± 4 8.9 ± 5.7 0.05 vs. MUE	4.2 ± 1.2 17 ± 2 11.6 ± 8.0 paseline value	4.0 ± 1.6 $18 \pm 2^{*}$ 9.1 ± 7.4
16 ± 4 7.7 ± 9.7‡ × time effect	16 ± 4 16.1 ± 6.8 by repeated-me	$\frac{15 \pm 3}{7.4 \pm 2.8}$ sures ANOVA	15 ± 4 5.2 $\pm 2.7^*$ x, *P < 0.05 vs.	14 ± 4 8.8 ± 4.9	14 ± 4 8.9 ± 5.7	17 ± 2 11.6 ± 8.0	18 ± 2* 9.1 ± 7.4
7.7 ± 9.7 × time effect	16.1 ± 6.8 by repeated-me	7.4 ± 2.8 isures ANOVA	$5.2 \pm 2.7^*$ $x_r * P < 0.05 vs.$	8.8 ± 4.9	8.9 ± 5.7	11.6 ± 8.0	9.1 ± 7.4
× time effect	by repeated-me	sures ANOVA	x; *P < 0.05 vs.	baseline: IP <	0.05 vs. MUE	baseline value	
			*				*
CHO/f	fibre	MU	JFA	CHO/	/fibre+Ex	М	JFA+Ex
	CH0/	CHO/fibre	CHO/fibre MU	CHO/fibre MUFA	CHO/fibre MUFA CHO	CHO/fibre MUFA CHO/fibre+Ex	CHO/fibre MUFA CHO/fibre+Ex MI

Bozzeto L et al. Diabetes Care 35:1429–1435, 2012. DOI:10.2337/dc12-0033. 2023

Plausible molecular determinants of the beneficial effect of the Mediterranean diet on NAFLD

Zelber-Sagi S et al. Liver International. 2017;37:936–949.

Fructose consumption promotes hepatic steatosis and NAFLD.

Vancells P et al. Nutrients 2021, 13(5), 1442; https://doi.org/10.3390/nu13051442

Soft drink consumption is associated with fatty liver disease independent of metabolic síndrome (MS).

Number of daily soft drinks in patients with NAFLD with or without MS

Association of soft drink consumption and severity of fatty liver disease.

FSC

NADOLI

Abid A et al. Journal of Hepatology 2009 918–924

A summary of the nutritional treatment options through the course of NAFLD

2023 Adapted from: Romero-Gomez Manuel et al. Journal of Hepatology 2017

Pre-hab structured and multidisciplinary program – specialized center*

European guideline on obesity care in patients with gastrointestinal and liver diseases - Joint ESPEN/UEG guideline*

LINICAL

Johnston H et al. Nutrients 2022

Results

Most promising effects with:

Ø

or

NAPOLI 2023

NAFLD/NASH patients with overweight or obesity not undergoing WL treatment \rightarrow at least 1 g Pro/kg ABW*/ d.

Undergoing a hpocaloric diet (7-10%) weight loss \rightarrow 1.2 g Pro/kg ABW/d. to prevent loss of muscle mass.

NAFLD/NASH patients with overweight or obesity and malnutrition or sarcopenia \rightarrow at least 1.2 and up to 1.5 g Pro /kg ABW/d.

Patients with overweight or obesity and compensated liver cirrhosis and malnutrition or sarcopenia $\rightarrow 1.5$ g Pro /kg ABW/d protein.

*Grade B strong consensus 100% agreement

Behavioral aspects of lifestyle modification

A practical guide for behavioral therapy in the lifestyle treatment of NASH.

IFSO

NAPOL

Wharton S et al. CMAJ 2020

Hallsworth K et al. Curr Gastroenterol Rep 2016

CULINARY MEDICINE FOR HEALTHCARE PROVIDERS & PATIENTS

https://diabetesalacarta.org/recetas/hamburguesa-de-sardina/

Conclusions

- Potential therapeutic role of a "high quality healthy diet" to improve hepatic steatosis and metabolic dysfunction in patients with NAFLD, independent of caloric restriction and weight loss.
- > The limited data suggest that MD may be an effective dietary approach.
- Prevention and management of sarcopenia are essential.
- Further studies, which robustly evaluate the effects of interventions on dietary intake, acceptability and sustainability of the interventions, and QoL and other patient-related outcomes are needed to support effective care delivery (personalized nutrition intervention).
- \succ Motivation to change \rightarrow Shared decision making \rightarrow Adherence
- Develop innovative strategies to implement lifestyle as a therapy in everyday clinical care sustainability (Culinary Medicine)

Thank you for your attention!

@Violetamoize
 @HospitalClinic
 vmoize@clinic.cat
 @violetaMoize