

XXVI IFSO WORLD CONGRESS

NAPLES, ITALY AUGUST 30-SEPTEMBER 1, 2023

MALABSORPTIVE SURGERY IN ELDERLY PATIENTS: OUTCOME ANALYSIS

A Curell, P González-Atienza, V Turrado-Rodríguez, X Morales, A Jiménez,

A de Hollanda, V Moizé, D Momblán, A Ibarzabal

CONFLICT OF INTEREST DISCLOSURE

In accordance with «EACCME criteria for the Accreditation of Live Educational Events», please disclose whether you have or you have not any conflict of interest with the companies:

[X] I have no potential conflict of interest to report.

DEFINITIONS

BACKGROUND

- ✓ INSUFFICIENT WEIGHT LOSS (IWL)
 - \checkmark <50% EWL% or BMI >35 Kg/m².
 - ✓ One of the most common reasons to qualify for revisional BS.
- ✓ WEIGHT REGAIN (WR)
 - ✓ Progressive weight regain after adequate weight loss has been achieved (EWL>50%).
 - ✓ 20-35% patients (after reaching *nadir* weight).
 - ✓ Non-consensus definition, considerable heterogeneity in methodology.

IWL/WR BACKGROUND

Reappearance or worsening of obesity-associated comorbidities

Deterioration of the quality of life

Higher complication and mortality rates compared to primary BS

Previous surgery?

Associated GERD?

IWL/WR

BACKGROUND

Reappearance or worsening of obesity-associated comorbidities

Deterioration of the quality of life

Higher complication and mortality rates compared to primary BS

Previous surgery?

Associated GERD?

METHODS

DEMOGRAPHIC VARIABLES

Sex	72.7% female / 27.3% male
Age	63.3 years-old (60—70)
BMI	44.03 Kg/m ² (35.17–56.09)
Time between surgeries	95.7 months (17—190)

Conversion from SG to distal GBP x6 DEMOGRAPHIC VARIA (Common limb length: 150 cm in 83.3%)

Sex	72.7% female / 27.3% ma Distalization of previous GBP x3
Age	63.3 years-old (60–70) (Common limb length: 150 cm)
BMI	44.03 Kg/m² (35.17–56. Conversion from SG to SADI-S x1
Time between surgeries	95.7 months (17–190) (Common limb length: 250 cm)

Primary SADI-S x1 (Common limb length: 300 cm)

IFSO

POSTOPERATIVE EVOLUTION

Intraoperative complications	0
Postoperative complications	9.09% (n=1) — Clavien 2
Mean hospital stay	2.36 days (2—3)

100% symptoms of GERD have resolved.

0% reoperations for malnutrition.

POSTOPERATIVE EVOLUTION

Follow-up	19.45 months (6—40)	
BMI (1 year after surgery)	31.45 Kg/m ² (24.63—36.51)	
EWL% (1 year after surgery)	63.46% (26.06—102.71)	
TWL% (1 year after surgery)	25.81% (10—38.3)	

EWL% (1 year after surgery)— global	75.88% (62.84-101.76)
TWL% (1 year after surgery)— global	37.78% (34.78-46.05)

Intestinal transit

Daily bowel movements	3.77 dep/day (1—7)
Flatulence	45.4%
Steatorrhea	36.4%
Treatment with Kreon®	27.3%

RESULTS

Ca or Vit. D deficiency	36.4%
Iron	45.4%
Protein deficiency	36.4%
Vit. A / vit. K deficiency	9.09% / 9.09%

Options:

Increase **restriction** — pouch or GJ's resizing.

Increase malabsorption — distalization of GBP.

Distalization of GBP

 ↑ EWL & TWL at the cost of diarrhea and multiple nutrient deficiencies.

 There is no consensus on the length of common limb (50–300 cm).

DISCUSSION

The rate of nutritional deficits increases with decreasing common and total alimentary limb lengths.

- Proteins.
- Calcium & vitamin D.
- · Iron.
- Liposoluble vitamins.
- Zinc, selenium.

Table 3	
Nutritional	deficiencies

·	n	Deficient n (%)	Range	LNL
Hemoglobin, mmol/L	44	29 (66)	F: 5.5-7.3	F: 7.4
4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1			M: 5.6-8.2	M: 8.4
Ferritin, µg/L	42	10 (24)	5-21	22
Vitamin B12, pmol/L	43	11 (26)	76-186	200
Vitamin B11, nmol/L	43	1(2)	3.8	5.0
Albumin, g/L	42	18 (43)	12-41	32
Calcium, mmol/L	43	26 (60)	1.94-2.19	2.20
Phosphate, mmol/L	34	4 (12)	.57	.8
Magnesium, mmol/L	34	3 (9)	.6465	.66
Selenium, µmol/L	16	13 (81)	.3257	.63
Zinc, µmoi/L	30	19 (63)	5.7-9.0	9.2
Copper, µmol/L	5	0 (0%)	>9.1	8.8
Vitamin A, μmol/L	32	16 (50)	<.35-1.02	1.05
Vitamin B6, nmol/L	32	0 (0)	>63	25
Vitamin B1, nmol/L	32	0(0)	>96	95
Vitamin D, nmol/L	42	21 (50)	<8-47	50
HPT, pmol/L	40	16 (40)	1.3-6.6	6.8*
Vitamin E, µmol/L	9	2 (22)	10.0-10.2	12.8
Vitamin K, nmol/L	5	4 (80)	<.1616	.22
Prolonged PTT, sec	26	11 (42)	16-27	15*

LNL = lower normal limit; F = female; M = male; HPT = hyperparathyroidism; PTT = prothrombin time.

Barcelona

van der Burgh et al. Surg Obes Relat Dis. 2020 Mar;16(3):381-388.

DISCUSSION

The rate of nutritional deficits increases with decreasing common and total alimentary limb lengths.

- Proteins.
- Calcium & vitamin D.
- Iron.

- Liposoluble vitamins.
- Zinc, selenium.
 Nutritional status

Ca or Vit. D deficiency	36.4%
Iron	45.4%
Protein deficiency	36.4%
Vit. A / vit. K deficiency	9.09% / 9.09%

^{*} Upper normal limit.

Nutritional status

Ca or Vit. D deficiency	36.4%
Iron	45.4%
Protein deficiency	36.4%
Vit. A / vit. K deficiency	9.09% / 9.09%

DISCUSSION

The rate of nutritional deficits increases with decreasing common and total alimentary limb lengths.

- Proteins.
- Calcium & vitamin D.
- Iron.
- Liposoluble vitamins.
- Zinc, selenium.

Ghiassi S et al. Surg Obes Relat Dis. 2018 May;14(5):554-561.

1 able 5			
Deservation	of mades	 	 with the same of

Proportion of patients with nutrition and vitamin levels below and above (PTH) normal limits after distalization using total alimentary limb length (TALL) of 400 to 450 cm

80		Predistalization	6 mo	1 yr	2 yr	3 yr
	Low value	% Low (n)	% Low (n)	% Low (n)	% Low (n)	% Low (n)
Albumin, gm/dL	<3.2	2.1 (94)	16.7 (24)	14.3 (28)	9.5 (21)	21.1 (19)
Hemoglobin, g/dL	<11	5.2 (96)	4.4 (23)	17.2 (29)	18.2 (22)	15.8 (19)
Protein, gm/dL	<5	.0 (91)	.0 (24)	.0 (27)	.0 (21)	.0 (19)
Iron, ug/dL	< 50	30.8 (13)	.0 (10)	21.7 (23)	27.8 (18)	27.3 (11)
Corrected Ca, mg/dL	< 8.5	4.3 (94)	.0 (24)	7.4 (27)	14.3 (21)	21.1 (19)
B1, nM	< 78	23.1 (13)	.0 (9)	5.6 (18)	11.8 (17)	16.7 (12)
B12, pg/mL	< 200	7.7 (13)	9.1 (11)	5.0 (20)	.0 (19)	9.1 (11)
Vit-A, mcg/dL	<38	N/A	66.7 (3)	100.0 (5)	100.0 (3)	100.0(1)
Vit-D, ng/mL	<30	40.0% (10)	55.6 (9)	66.7 (21)	60.0 (20)	76.9 (13)
6.	High value	% High (n)	% High (n)	% High (n)	% High (n)	% High (n)
PTH, pg/mL	>65	21.4 (14)	55.6 (9)	40.0 (20)	57.9 (21)	63.6 (11)

PTH = parathyroid hormone; Ca = calcium; Vit = vitamin; NA = not applicable.

Number of patients with lab values is listed in parenthesis for each time point and is the same for Tables 5 and 6.

Tabla 3 – Necesidad de suplementación nutricional extra a la suplementación básica

	Cruce duodenal	
	n = 224	%
Necesidad global a más de 2 años	208	83,9%
Vitamina A	72	35,8%
Vitamina B12	17	8,5%
Vitamina D	120	59,7%
Vitamina E	6	3,0%
Vitamina K	3	1,5%
Calcio	71	35,3%
Hierro	82	40,8%
Cobre	11	5,5%
Zinc	16	8,0%
Albumina	1	0,5%
Ácido fólico	13	6,5%

Sorribas M et al. Cir Esp. 2022; 100(4): 202-208.

DISCUSSION

The rate of nutritional deficits increases with decreasing common and total alimentary limb lengths.

- Proteins.
- Calcium & vitamin D.
- Iron.

- Liposoluble vitamins.
- Zinc, selenium.
 Nutritional status

Ca or Vit. D deficiency	36.4%
Iron	45.4%
Protein deficiency	36.4%
Vit. A / vit. K deficiency	9.09% / 9.09%

CONCLUSIONS

- One fifth of patients undergoing BS may not achieve satisfactory results by weight loss standards.
- Conversion to surgical procedures with a **greater malabsorptive component** is a good option in cases of **insufficient weight loss**.
 - It also allows resolution of possible associated GERD.
- Safe surgical procedures in elderly patients.
 - Possible metabolic sequelae in the medium and long-term.
- Evaluation of these patients in **multidisciplinary** committees is necessary, as well as **individualized approach** and treatment.
- Early detection of these patients is important in order to try to propose additional therapeutic strategies to try to avoid it.

XXVI IFSO WORLD CONGRESS

NAPOLI NAPLES, ITALY AUGUST 30-SEPTEMBER 1, 2023

MALABSORPTIVE SURGERY IN ELDERLY PATIENTS: OUTCOME ANALYSIS

A Curell, P González-Atienza, V Turrado-Rodríguez, X Morales, A Jiménez, A de Hollanda, V Moizé, D Momblán, A Ibarzabal

