24-hour movement behaviours, obesity and cardiometabolic risk

Dr Louisa Herring – Physical activity, Research and Implementation Lead Research Associate Leicester Biomedical Research Centre, Leicester Diabetes Centre, UK

Linking cardiometabolic disease health outcomes to the 24-h movement behaviours

Management of hyperglycarmia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (AOA) and the European Accordation for the Study of Dighesia (EASE)

Makes I Server 10 years A Garage 10 Mile | Caller 10 Miles A Calle

FIGURE 2: IMPORTANCE OF 24-HOUR PHYSICAL BEHAVIOURS FOR TYPE 2 DIABETES

		Glucose/insulin	Blood pressure	HbA _{tc}	Lipids	Physical function	Depression	Quality of life
•	SITTING/BREAKING UP PROLONGED SITTING	↓	↓	4	↓	↑	4	↑
	STEPPING	V	↓			↑	+	↑
	SWEATING (MODERATE-TO-VIGOROUS ACTIVITY)	V	4	+	V	↑	+	↑
	STRENGTHENING	V	4	4		↑	4	↑
C	ADEQUATE SLEEP DURATION	V	4	4	4	0	4	个
	GOOD SLEEP QUALITY	V	4	+	V	0	4	↑
No.	CHRONOTYPE/CONSISTENT TIMING	4	0	4	0	0	4	0

IMPACT OF PHYSICAL BEHAVIOURS ON CARDIOMETABOLIC HEALTH IN PEOPLE WITH TYPE 2 DIABETES

🕆 Higher Levels/improvement (physical function, quality of life); 🕹 Lower levels/improvement (glucose/insulin, blood pressure, HbA₁,, lipids, depression); 🥹 no data available;

↑ Green arrows = strong evidence; ↑ Yellow arrows = medium strength evidence; ↑ Red arrows = limited evidence.

The 5S's concept for obesity and cardiometabolic health outcomes

SLEEP

Aim for consistent, uninterrupted sleep, even on weekends

Quantity - Short sleep durations (≤6h) negatively impact obesity risk. Less research exists for longer sleep durations (>8h).

Quality – Poor sleep is associated with a higher BM. Severe obesity is associated with significant sleep disturbances resulting in sleep debt affecting appetite and physical activity negatively.

Chronotype – Evening chronotypes are less successful in adapting to weight loss treatments and long-term weight control. Bariatric surgery induced weight loss is less effective in evening chronotypes.

Sleep and obesity

Sleep duration	Obesity	
4h	1.37 (1.16-1.62)	
5h	1.22 (1.09-1.35)	
6h	1.08 (1.03-1.13)	
7h	1.00	
8h	1.00 (0.96-1.03)	
9h	1.01 (0.94-1.09)	

SITTING/BREAKING UP PROLONGED SITTING

- Limit sitting, time spent sedentary is adversely associated with cardiometabolic health with detrimental affects on overweight and obesity.
- Breaking up prolonged sitting (every 30 min) with short regular bouts of slow walking/simple resistance exercise is positively associated with measures of adiposity.
- Time spent sedentary may be a more important indicator of poor health than MMPA

Associations between

Sedentary time and mortality

Sedentary breaks and adiposity

Ekelund et al. 2019, BMJ

Distinct risk factors associated with time spent sedentary...

Depression Obesity **Hypertension** Cardiovascular disease All cause mortality Some cancers mortality Type 2 Diabetes Dyslipidaemia Insulin resistance

...even after accounting for time spent in moderate-to-vigorous physical activity

Henson et al, 2016. Diabetes Metab Res Rev

Sedentary breaks and obesity related metabolic outcomes

Postprandial glucose & insulin

when sitting is interrupted
with light physical activity
greater in higher BMI's

Henson et al, 2016. Diabetes Care; Henson et al, 2020. Med Sci Sports Exerc; Yates et al, 2018. *The Journals of Gerontology*

STEPPING

- An increase of only 500 steps/day is associated with 2-9% decreased risk of cardiovascular morbidity and all-cause mortality.
- A 5 to 6 min brisk intensity walk per day equates to ~4 years' greater life expectancy.

Association of stepping with health (all-cause mortality)

As measured by accelerometers, 9500 steps/day had a 35.05% lower risk of cardiovascular events than 3500 steps/day

Sheng et al, 2021. J of sport and health sciences

Stepping and metabolic & bariatric surgery

Pick up the pace

Additional 14% reduction in the risk of CVD

biological age

16 years younger

Dempsy et al, 2022. Eur Heart J; Dempsy et al, 2022. Communications biology

Walk fast = die old(er)

~ 4 year greater life expectancy

Rowlands et al , 2021. *Br J Sports Med* Chudasama et al, 2019. *BMC Med* Rowlands, et al, 2018. *Med Sci Sports Exerc*

SWEATING (MODERATE-TO-VIGOROUS ACTIVITY)

 Recommendations suggest varying amounts of MMPA depending on an individual's weight or health related goal

150 min/wk for maintaining and improving health
150-250 min/wk for the prevention of weight gain
200-300 min/wk to prevent weight gain after weight loss
225-420 min/wk to promote clinically significant weight loss

Supplement with two to three resistance, flexibility and/or balance sessions

Something is always better than nothing (at least when it comes to exercise)

'Weekend Warrior'
Increased activity, even
when concentrated within 1
to 2 days each week, may
be effective for improving
cardiovascular risk profiles
Khurshid et al, 2023. JAMA

Eijsvogels et al, 2016. Journal of the American College of Cardiology

MVPA and metabolic & bariatric surgery outcomes

More lower intensity physical activity in first 6 months of surgery

Herring et al. 2015 Obesity Reviews

Patients are no less sedentary following bariatric surgery

James et al, 2022. physiotherapy

Lifestyle intervention (Diet & MVPA)
3-6m

No effect on weight loss, physical activity, sedentary behaviour levels, physical function/QoL

Jassil et al, 2023. Clinical trials and investigations

Point of weight plateau/ regain 12-24m

Physical function

Weight loss maintenance

Herring et al, 2017. Int J Obesity

22 26

Weeks

Placebo

Exercise

Liraglutide

Exercise and

Liraglutide

MVPA's role in maximising weight loss

Pharmacotherapy (semaglutide) licensed for 2 years in UK (NICE)

Lundgren et al. 2021. New Eng J of Med.

STRENGTHENING

 Resistance exercise can minimise muscle and bone mass loss during weight loss, improve glucose and insulin sensitivity.

Physical Function / Frailty

- Resistance exercise is important in helping to prevent frailty, commonly linked to both obesity and weight loss in older adults.
- Adulthood obesity increases the likelihood of frailty/ pre frailty in older age 2.5 fold. Routine assessment of BM and waist circumference could identify and lower this frailty risk.

Exercise to maximise weight loss outcomes

Intervention	Physical function	Lean body mass	Relative aerobic capacity
Diet induced energy restriction	1	11	•
Structured exercise training	11	⇔1	111
Diet + exercise	111	\Leftrightarrow	1

Weight loss without exercise may limit long-term benefits, leaving individuals at an increased risk of poor physical function and frailty.

Functional improvements were greater with combination training (21%) than with either aerobic or resistance alone (14%).

Weight loss plus combined aerobic and resistance exercise is the most effective in improving functional status of obese older adults.

Frailty is not a simple correlate of age, necessarily progressive nor irreversible

Functional tests (Handgrip Strength and Sit-to-Stand)

>800 people (BMI=31kg/m²) with T2DM have undergone physical function tests. The 30% with impaired physical function had a functional age >20 years older than their chronological age (grip strength).

Handgrip Strength

(average age=62) median HG=24.8kg) median HG=16.8kg) Normative value Grip strength normative values (kg) Actual value 50 55 60 65 70 75 80 85 90 50 55 60 65 70 75 80 85 90

Age (years)

Sit-to-Stand

PA expertise is needed in routine weight management services

Objectively measured 24-h physical behaviours are important in routine weight management

Physical activity & sleep measurements

Quantifiable physical behaviours

Personalised care pathway

From hypothesis generation to population and patient benefit: The Leicester translational pathway for physical activity research

Epidemiology

Generating new knowledge for the link between lifestyle and health (Hypothesis generation)

Experimental (efficacy)

Testing new lifestyle therapies to investigate mechanisms, optimal dosing, and impact on health

Effectiveness

Evaluating the longer-term effectiveness of lifestyle interventions at initiating and sustaining behaviour change or improving health outcomes

Implementation

Implementing lifestyle interventions with evidence of effectiveness into clinical, community or occupational settings

Our physical activity tools

Our Steps4Helth web app and the physical activity and health metrics dashboard are available for user testing.

Contact us if interested on

LDCImplementation@uhl-tr.nhs.uk

Holistic coaching

Thank you for listening