

LIVER BACTERIAL COLONIZATION IN PATIENTS WITH OBESITY AND GUT DYSBIOSIS

Lucia Paiano, Giuseppina Campisciano, Biagio Casagranda, Manola Comar, Nicolò de Manzini, Silvia Palmisano

> University of Trieste- Surgical Clinic Unit, Cattinara Hospital, ASUGI

Background:

Link between

- ☐ Gut microbiota,
 - Obesity
- ☐ Liver inflammation

FOCUS OF RESEARCH

Obesity -> chronic dysbiosis gut microbiota

Background:

In the inflammatory status

(Obesity → chronic inflammatory disease)

Gut permeability

Translocation of MAMPs an DAMPs (microbial and danger associated molecular pattern) from the gut to the liver

Dysbiosis

Lactobacillus sop.

Cell death and inflammation during obesity: "Know my methods, WAT(son) Ximena Hildebrandt et al **Nature Sep 2022**

Ethanol > Acetaldehyde

Host–Microbiota Interactions in Liver Inflammation and Cancer
Julie Giraud et al **Cancer 2021**

NO studies that demonstrate the presence of the bacterial genome in obese patients liver biopsy.

AIMs OF THE STUDY:

- □ Search for BACTERIAL GENOMA IN LIVER BIOPSY (neither MAMPs nor DAMPs)
- ☐ Compare the bacterial genome founded in the **liver with gut** microbiota composition in fecal samples (gut-liver axis)

Methods:

Prospective study \rightarrow Enrollement patients undergoing bariatric surgery consequently . Signature of informed consent, collection anamnestic/anthropometric information.

Patients data

Stool samples
Day before surgery

Laparoscopic liver biopsy

V3-16S rRNA region sequencing
Ion Torrent new generation sequencing platform

n= 23 patientsStools samples and liver biopsy

V3-16S rRNA region sequencing

n=8 patients (34,7%)

The same bacterial genoma in stools samples and in liver biopsy

n=15 patients (65,3%)
Baterial genoma only in stools samples

Prevotella (62,5%), Bacterioides (50%), Dalister (12,5%), Streptococcus (12,5%)

Kleiner fibrosis

$$p = 0.4$$

Kleiner lobular inflammation

$$p = 0.3$$

Brunt steatoephatitis

$$p = 0.2$$

Complication ra according to Dindo Clavien 90 days	te	Obese w liver colonization	Obese w/o liver colonization		
	0	12 (80%)	6 (75%)	p = 0.9	
	1	1 (6.7%)	1 (12%)		
	2	2 (13%)	1 (12%)		
% Body Weight Lost at 1 year (Exces poids)		83,6 %	74,4 %	p = 0.4	

Microbiota analysis (median):

Species	Obese w/o liver colonization	Obese w liver colonization	P value
Bacteroides coprocola	2%	0%	0.810
Bacteroides dorei	1%	0%	0.070
Bacteroides faecis	1%	1%	0.441
Bacteroides massiliensis	2%	2%	0.246
Bacteroides thetaiotaomicron	1%	0%	0.515
Bacteroides uniformis	3%	6%	0.582
Bacteroides vulgatus	6%	4%	0.496
Barnesiella intestinihominis	0%	1%	0.718
Blautia wexlerae	1%	1%	0.794
Clostridium bartlettii	1%	1%	0.347
Clostridium glycyrrhizinilyticum	1%	0%	0.818
Clostridium symbiosum	2%	1%	0.219
Faecalibacterium prausnitzii	4%	2%	0.496
Fusicatenibacter saccharivorans	1%	2%	0.496
Gemmiger formicilis	0%	1%	0.258
Parabacteroides distasonis	1%	0%	0.631
Parabacteroides merdae	1%	1%	0.794
Roseburia intestinalis	3%	1%	0.034
Suttereiia waaswortnensis	1%	0%	0.896

Roseburia intestinalis modulation in the gut tract

NAPOLI

- Production of butyrate
- Stimultation exctretion cytokines
 - Promotion differentiation and regulation T cells
 - Activation ILC3
- Suppression TH17 and macrophages
 - Its flagellin displays an antiinflammation effect through TLR5.

Roseburia intestinalis: A Beneficial Gut Organism Fronthe Discoveries in Genus and Species Kai Nie et al

Roseburia dysbiosis-associated diseases exist in different systems

Chronic kidney disease

NAPOLI

IBD (inflammatory bowel diseases)
IBS (irritable bowel syndrome)
NAFLD
AFLD,
CRD (chronic rheumatoid disease)
APS(antiphospholipid syndrom)
etc...

Conclusions:

- First study reporting the <u>presence of bacterial genome in a liver</u> <u>biopsy</u> on bariatric patients.
- In 8 patients, we found same bacterial genoma in stools samples and in liver biopsy → bacterial traslocation from gut or vascular barrier to the liver
- In our population, the *Roseburia intestinalis* dysbiosis was associated with the presence of bacterial genome in the liver, probably related with a greater permeability of the gut and vascular barriers.

In accordance with «EACCME criteria for the Accreditation of Live Educational Events»:

I have no potential conflict of interest to report

