

XXVII IFSO World Congress

Melbourne Convention and Exhibition Centre 3 - 6 September 2024

CONFLICT OF INTEREST DISCLOSURE

I have no potential conflict of interest to report

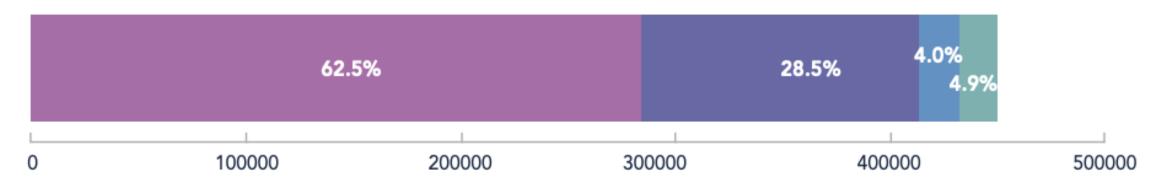
International Federation for Surgery for Obesity and Metabolic Disorders

2024

Contributors to the eighth report

Contributors to the eighth report

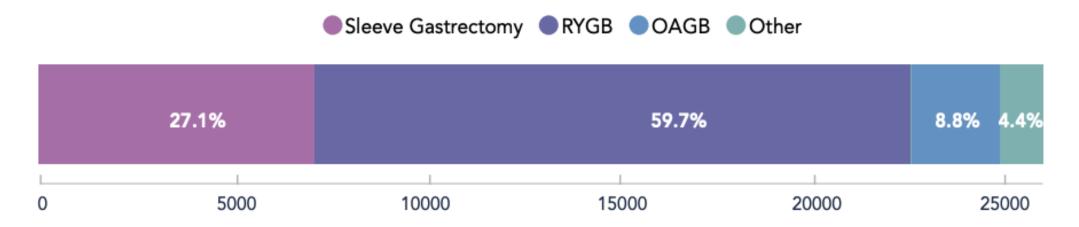
Geographic distribution of contributors to the eight IFSO global registry report - seen on the map above.


Fach of the IFSO Chapters is represented. A list of key contacts can be found in Appendix 1.

Primary procedures

Primary procedure types (n=449,815).

Primary procedures



rate! rate!

Revisional procedures

Revisional procedures (n= 25,938).

21,057 conversion procedures from USA excluded from analysis as no breakdown of procedure type provided

Revisional procedures

BRAZIL

FRANCE

ITALY

ISRAEL

CHILE

RUSSIA

MEXICO

AUSTRIA

CHINA

SWEDEN KUWAIT

VENEZUELA

NEW ZEALAND | 94

NORWAY

SOUTH KOREA 60

AZERBAIJAN

AUSTRALIA

MICHIGAN, USA

NETHERLANDS

1,499

1,201

1,063

1,052

749

285

248

223

187

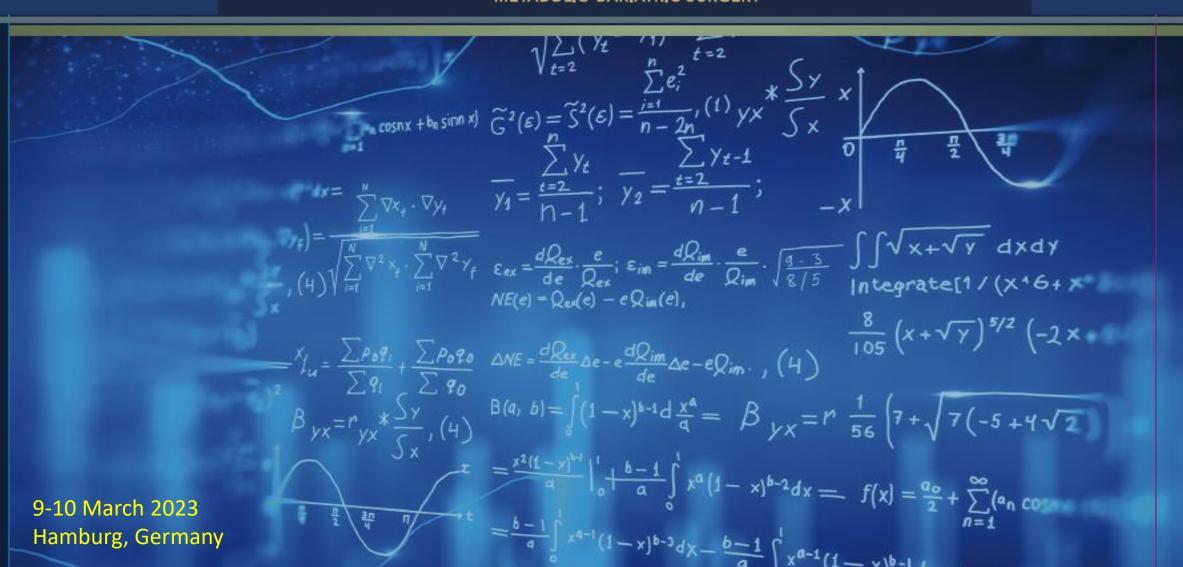
3,914

4.5%

Overall Rate of revisional surgery 10.4%

7,048

6,400


Revisional MB procedures

- defined as procedures to change one type of MBS → a different MBS
- **conversion** → revise index procedure → another
 - required for- weight \uparrow
 - SE initial procedure or
 - recurrence metabolic disorders
- **corrective** → revise index to change anatomy
 - address complications
 - reduction internal hernia
 - dilatation of a stricture

All acceptable reflecting the chronic nature of the disease of obesity.

CONSENSUS ON DEFINITIONS AND CLINICAL PRACTICE GUIDELINES FOR PATIENTS CONSIDERING METABOLIC-BARIATRIC SURGERY

CONSENSUS ON DEFINITIONS AND CLINICAL PRACTICE GUIDELINES FOR PATIENTS CONSIDERING METABOLIC-BARIATRIC SURGERY

	-	V ₄	/1/	
4	2	\ /Z	0.00	4-2
- 317	_			T = Z

11/21/2 7=2	
REPORTING STANDARDS : RECURRENT WEIGHT GAIN	Percentage Consensus
In general, a suboptimal initial clinical response to MBS is demonstrated either by a total body weight or BMI loss of less than 20% OR by an inadequate improvement in an obesity complication that was a significant indication for surgery.	100%
In general, a late post-operative clinical deterioration after MBS is demonstrated either by recurrent weight gain of more than 30% of the initial surgical weight loss OR by worsening of an obesity complication that was a significant indication for surgery.	85%

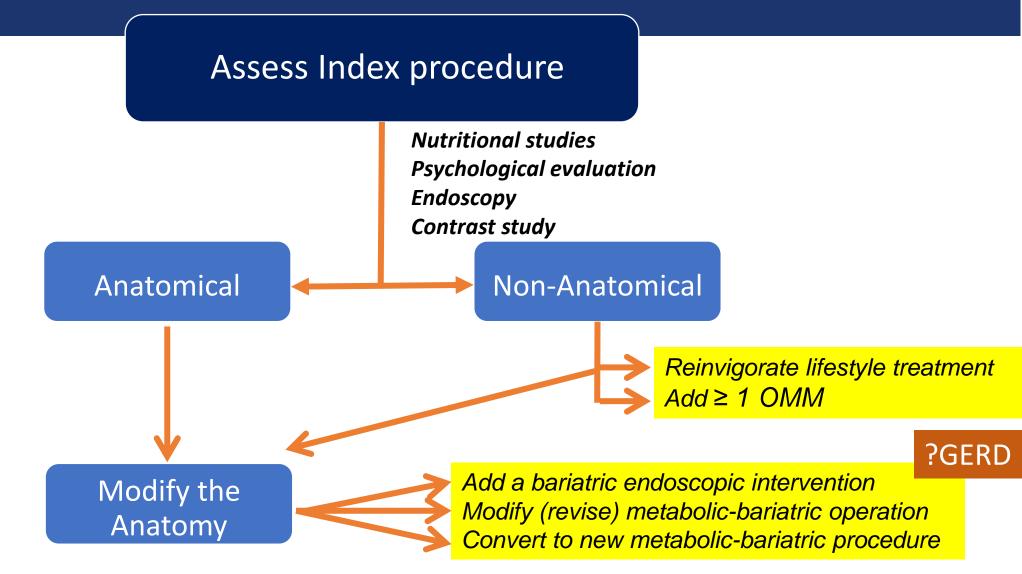
 $a \int x^{a-1} (1-x)^{b-3} dx - \frac{b-1}{a} \int x^{a-1} (1-x)^{b-1} dx$

Evidence regarding therapeutic weight loss for complications of obesity

Obesity complication	Weight loss for substantial improvement (%)	Benefits increase with increasing weight loss
Type 2 diabetes	5-15	✓
Hypertension	15	✓
Dyslipidemia	10-15	✓
Fatty liver disease (NAFLD)	10	✓
Sleep apnea	10	✓
Osteoarthritis	5-15	✓
Stress incontinence	5-10	✓
Gastroesophageal reflux	10-15	✓
Polycystic ovary syndrome	10-15	✓

Assess Index procedure

Nutritional studies
Psychological evaluation
Endoscopy
Contrast study

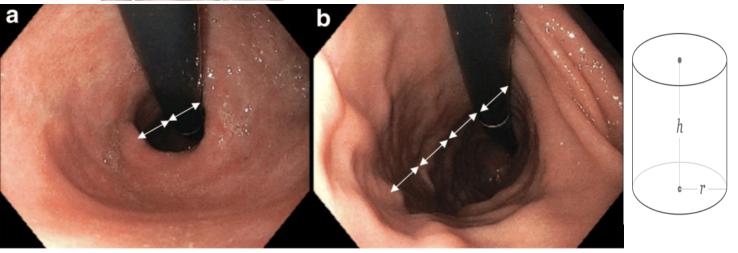

endoscopy

- Volume of LSG or Proximal pouch of GB
- Esophagitis
- Hiatus Hernia +/- reflux : LSG → RYGB
- BE ↑ Prevalence BE after LSG ↑ year by year. Not ↑ after RYGB (level 1:Qumseya et al.)
- Assess anastomosis (Gastro-Jejenostomy/ Duo-Ileal)
- H Pylori must be evaluated before any MBS with gastric exclusion
 - HP may →gastric Ca, atrophy, ulceration or GIST (level 1: Wang et al)
 - HP should be eradicated before MBS to \downarrow the risk of gastric Ca
 - HP protects however against esophageal adenoCa (level 1:Xie et al)

Wang et al Obesity surgery. 2021;31:337-42 Qumseya et al Obesity surgery. 2022;32:3513-22

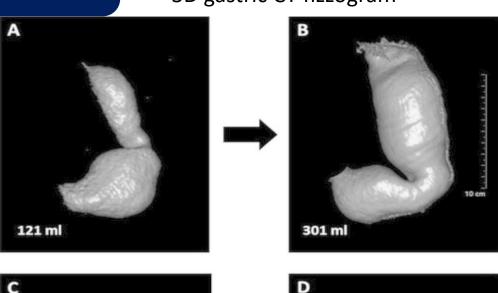
Lewis et al SOARD 2021;17:72-80

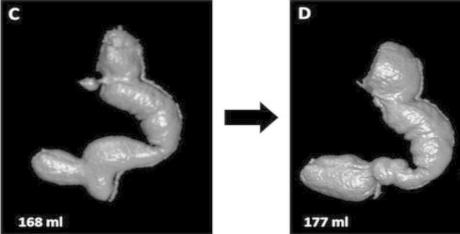
Xie et al World J Gastroenterology. 2013:19:6098-107



Each option has different benefit, risk and cost characteristics

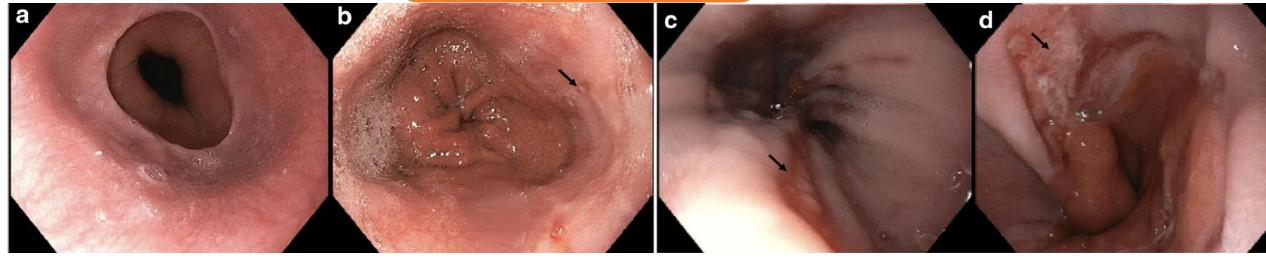
Assess Index procedure: SG


3D gastric CT fizzogram


Volume <u>Sleeved Stomach</u>

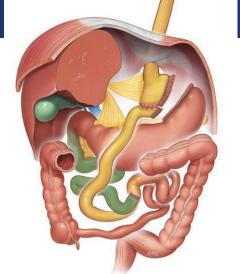
endoscopy
$$V = \pi \left(\frac{d}{2}\right)^2 h = \pi \cdot \left(\frac{2.5}{2}\right)^2 \cdot 30 \approx 147.26216$$

Lim et al Obesity Surgery (2019) 29:207–214 Disse et al: Obesity Surgery (2017) 27(1)


Assess Index procedure: SG

Endoscopy Sleeved Stomach

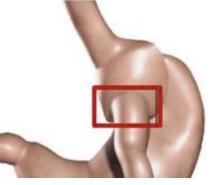
- Volume
- Esophagitis
- BE


DEN Open. 2022;2:e94 https://doi.org/10.1002/deo2.94

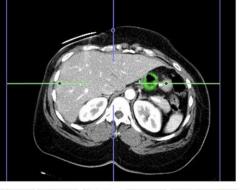
A Hiatal hernia B grade A esophagitis C grade B esophagitis

Los Angeles (LA) classification of erosive esophagitis.

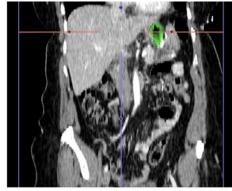
D grade C esophagitis

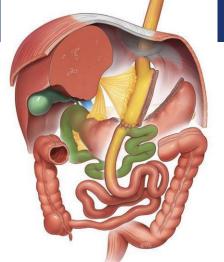

Assess Index procedure:RYGB

CT volumetric analysis


Volume gastric pouch

Diameter Gastro-Jejunostomy Stoma

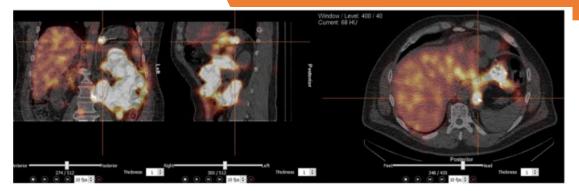




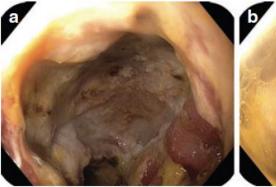
endoscopy

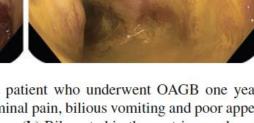
Barham Abu Dayyeh et al Frontiers Endocrinology 2022 (13) doi: 10.3389/fendo.2022.946870 Nimeri et al Obesity Surgery (2022) 32:587–592

The SAGES Manual of Physiologic Evaluation of Foregut Diseases. Endoscopic Evaluation of the Bariatric Surgery Patient 2023: 215-233



Assess Index procedure: OAGB


endoscopy


6 RCTs/Prosp/retrosp cohort studies n=134

- Bile Reflux 47% asso RWG
- Inadequate Weight loss 8%
- Malnutrition 31 %

SPECT-CT scan at the end of bile reflux scintigraphy of a representative patient. Bile tracer activity in the gastric pouch and esophagus are shown

Fig. 42.7 (**a**, **b**) Bile reflux in a patient who underwent OAGB one year prior, complaining of severe abdominal pain, bilious vomiting and poor appetite. (**a**) Extensive and deep GJ ulcer. (**b**) Bile noted in the gastric pouch and esophagus

Sargsyan N et al. Outcomes of OAGB Conversion to RYGB for Severe Obesity: A Systematic Review and Meta-analysis Obesity Surgery 2024 (34): 976–984.

Del Gobo & Kroh M. The SAGES Manual of Physiologic Evaluation of Foregut Diseases:Reflux After RYGB and OAGB. P573-590

Saarinen T et al Bile Reflux is a Common Finding in the Gastric Pouch After One Anastomosis Gastric Bypass Obesity Surgery 32020(30) 875–881,

Options for RWG after MBS with or without GERD

LAGB (level 3 and 4)

- conversion to SG
- conversion to RYGB
- conversion to OAGB
- conversion to BPD/DS or SADI-s

SADI-S (level 4)

conversion to BPD/DS

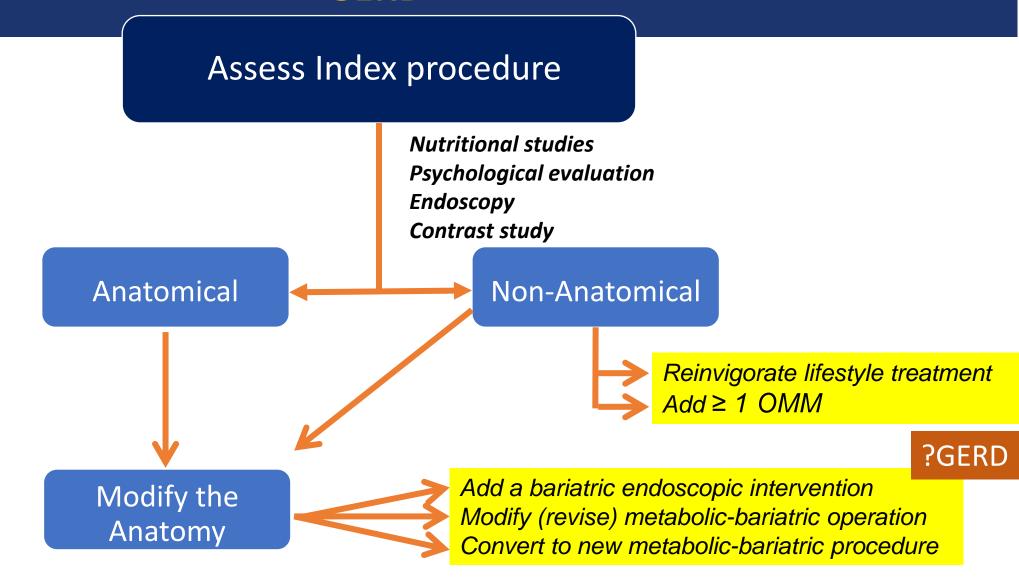
VBG (level 4 and 5)

- conversion to RYGB
- conversion to BPD/DS (high complication rate)

Sleeve Gastrectomy (level 3 and 4)

- conversion to RYGB
- conversion to OAGB
- conversion to BPD/DS or SADI-s
- Endoscopic gastroplasty/TORe

BPD/DS (level 5)


conversion to

RYGB (level 4 and 5)

- Lengthening of BP limb
- conversion to BPD/DS?
- Endoscopic gastroplasty/TORe

OAGB (level 4 and 5)

- Conversion to RYGB
- conversion to BPD/DS?
- Endoscopic gastroplasty/TORe

Each option has different benefit, risk and cost characteristics

XXVII IFSO World Congress

Melbourne Convention and Exhibition Centre 3 - 6 September 2024

