Jonathan Sivakumar, Qianyu Chen, Lynn Chong, Matthew Read, Salena Ward, Nicole Winter, Tom R Sutherland, Michael W Hii Department of Upper Gastrointestinal Surgery, St Vincent's Hospital Melbourne

Quantifying body composition changes 12 months following bariatric surgery: Sleeve gastrectomy vs Roux-en-Y gastric bypass

Jonathan Sivakumar, Qianyu Chen, Lynn Chong, Matthew Read, Salena Ward, Nicole Winter, Tom R Sutherland, Michael W Hii

XXVII IFSO World Congress

I have no potential conflict of interest to report.

XXVII IFSO World Congress

Background

- Laparoscopic sleeve gastrectomy (SG) and laparoscopic Roux-en-Y gastric bypass (RYGB) – currently the two most performed bariatric procedures worldwide
- Although greater weight loss after RYGB in long-term, SG had similar short- and mid-term weight loss outcomes

XXVII IFSO World Congress

Knowledge Gap

- Lack of understanding in body composition changes after the two procedures
 - How much fat mass is lost?
 - How much lean body mass is lost?
- Implication of lean mass
 - Key determinant to metabolic rate
 - Associated with long-term weight maintenance and glycaemic control for diabetics

XXVII IFSO World Congress

Methods

Patient Cohort

 Prospective cohort study in two tertiary hospitals in Melbourne between 2017 and 2023

Selection Criteria

- Inclusion criteria
 - All adult patients underwent primary/revisional SG or RYGB were invited
- Exclusion criteria
 - Cognitive impairment
 - Age <20
 - Preop weight >159kg

Data Extraction

- Preoperative DXA
- Post-operative DXA at 1-, 6-, 12-, and 24months
- Parameters of interest:
 - Total weight
 - Fat mass
 - Lean body mass
 - Bone mineral content

Statistical Analysis

- Chi-squared tests for categorical variables, student's t-test for continuous variables
- Mixed model for repeated measures for post-op trajectory of each parameter

XXVII IFSO World Congress

	SG	RYGB	All patients	P-value					
	(n = 30)	(n= 15)	(n = 45)						
Demographics									
Age, Mean (SD)	40.0 (10.0)	50.4 (11.1)	43.5 (11.4)	0.0029					
Gender, n (%) - Female	23 (76.67)	13 (86.67)	36 (80)	0.695					
Comorbidities									
Diabetes type 2, n (%)	4 (13.33)	4 (26.67)	8 (17.78)	0.41					
Hypertension, n (%)	4 (13.33)	9 (60)	13 (28.89)	0.004					
Ischaemic heart disease, n (%)	1 (3.33)	0 (0)	1 (2.22)	1					
Osteoarthritis, n (%)	2 (6.67)	5 (33.33)	7 (15.56)	0.032					
Anthropometrics									
BMI (kg/m ²) Mean (SD)	41.4(5.0)	42.0(5.7)	41.6(5.2)	0.7241					
Weight (kg) Mean (SD)	115.4(16.7)	115.8(19.3)	115.5(17.4)	0.9474					
Overall Body Composition									
Fat Mass (kg), Mean (SD)	56.9(12.3)	58.4(14.3)	57.4(12.8)	0.6965					
Lean Body Mass (kg), Mean (SD)	55.6(9.3)	53.5(9.9)	54.9(9.5)	0.4979					
Bone Mineral Content (kg), Mean (SD)	2.88(0.40)	2.77(0.49)	2.84(0.43)	0.4245					

XXVII IFSO World Congress

Change over 12 months...

Body Composition Measurements	SG (n = 30)	RYGB (n = 15)	All patients (n = 45)	Difference between groups	P-value				
		Anthronometrics							
Anthropometrics									
BMI (kg/m²), Mean (SD)	11.2 (3.8)	11.0(3.6)	11.1(3.7)	0.2	0.8340				
Weight (kg), Mean (SD)	31.3 (10.8)	30.6(10.8)	31.0(10.7)	0.7	0.8388				
Total weight loss (%), Mean (SD)	27.2(9.3)	26.3(8.2)	26.9(8.9)	0.9	0.7575				
Body Composition									
Fat mass (kg), Mean (SD)	25.7(10.7)	24.2(10.1)	25.2(10.4)	1.5	0.6731				
Lean body mass (kg), Mean (SD)	5.7(2.6)	5.2 (3.4)	5.5(2.9)	0.5	0.5336				
Bone mineral content (kg), Mean (SD)	0.11 (0.08)	0.17 (0.08)	0.13(0.08)	0.06	0.0223*				

XXVII IFSO World Congress

At 12 months post-operatively:

- Mean %TWL of 26.94%
- Mean BMI reduction of 11.12 kg/m2
- Statistically significant reduction of all body composition parameters
- Ratio of mean loss of FM-to-LBM was similar between SG and RYGB
- LBM comprised 17.8% of weight loss

LBM loss reached a plateau at 6-months following both procedures, although the RYGB cohort did demonstrate a significant regain in LBM after from 6-to-12-months post-operatively

XXVII IFSO World Congress

At 12 months post-operatively:

- Mean %TWL of 26.94%
- Mean BMI reduction of 11.12 kg/m2
- Statistically significant reduction of all body composition parameters
- Ratio of mean loss of FM-to-LBM was similar between SG and RYGB
- LBM comprised 17.8% of weight loss

LBM loss reached a plateau at 6-months following both procedures, although the RYGB cohort did demonstrate a significant regain in LBM after from 6-to-12-months post-operatively

Fat Mass Change Overtime 2 8 Kilograms 50 12 Month Fat Mass Trajectory 40 30 0 Time(Months) SG — RYGB Fat Mass Change Overtime 20 09 24 Month Fat Kilograms 40 50 Mass Trajectory Subgroup Analysis 8 20 0 1 18 24 12 6 Time(Months) SG RYGB

XXVII IFSO World Congress

At 12 months post-operatively:

- Mean %TWL of 26.94%
- Mean BMI reduction of 11.12 kg/m2
- Statistically significant reduction of all body composition parameters
- Ratio of mean loss of FM-to-LBM was similar between SG and RYGB
- LBM comprised 17.8% of weight loss

LBM loss reached a plateau at 6-months following both procedures, although the RYGB cohort did demonstrate a significant regain in LBM after from 6-to-12-months post-operatively

XXVII IFSO World Congress

At 12 months post-operatively:

- Mean %TWL of 26.94%
- Mean BMI reduction of 11.12 kg/m2
- Statistically significant reduction of all body composition parameters
- Ratio of mean loss of FM-to-LBM was similar between SG and RYGB
- LBM comprised 17.8% of weight loss

LBM loss reached a plateau at 6-months following both procedures, although the RYGB cohort did demonstrate a significant regain in LBM after from 6-to-12-months post-operatively 12 Month Bone Mineral Content Trajectory

XXVII IFSO World Congress

Clinical Impact

- Greatest lean body mass decline happened in early months post-operatively
 - Important to mitigate losses prior to stabilization phase
 - Neither bariatric procedure demonstrated advantage in lean body mass retention
- Significant but marginally higher bone mineral content reduction in RYGB
 - Previous studies supported RYGB's osteoporotic predisposition
 - Possible mechanism of this include malabsorption of intestinal bypass calcium and vitamin D deficiency

XXVII IFSO World Congress

Discussion

- Limitations
 - Lack of control/measurements on post-operative nutritional intake and physical activity
 - Small sample size
- Future research
 - Long-term body composition data needed
 - Controlled studies on strategies to mitigate lean body mass loss before 6-month post-operative mark

XXVII IFSO World Congress

Conclusion

- SG and RYGB achieved substantial and comparable weight loss and similar body composition changes in the 12-month post-operative period
- Fat mass and lean body mass loss trajectory appeared to be similar in the early post-operative period
- Around one fifth weight loss was contributed by lean body mass, this predominantly happened in the initial 6 months after surgery

XXVII IFSO World Congress

