Impact of Bariatric Surgery on Myosteatosis in Morbidly Obese Patients

<u>Hyuk-Joon Lee</u>, Jae-Gyun Park, Sa-Hong Kim, Jisoo Kim, Chungyoon Kim, Kyo-Young Park, Jeesun Kim, Young-Min Cho, Seong-Ho Kong, Do-Joong Park, Han-Kwang Yang

Department of Surgery, Seoul National University College of Medicine, Seoul, KOREA Department of Internal Medicine, Seoul National University College of Medicine, Seoul, KOREA Department of Surgery, Pusan National University College of Medicine, Pusan, KOREA

XXVII IFSO World Congress

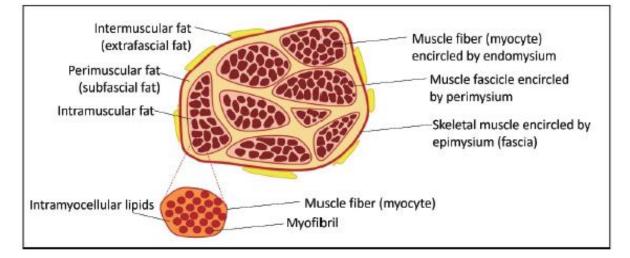
CONFLICT OF INTEREST DISCLOSURE

In accordance with «EACCME criteria for the Accreditation of Live Educational Events», please disclose whether you have or not any conflict of interest with the companies:

If you don't have any conflict, please delete the conflict of interest report points:

[] I have no potential conflict of interest to report

[O] I have the following potential conflict(s) of interest to report:


- Type of affiliation / financial interest:
- Receipt of grants/research supports: Olympus Korea, JW Pharmaceutical, Abbott, InnoN
- Receipt of honoraria or consultation fees: JNJ, Medtronic, Olympus, Intuitive Surgical
- Participation in a company sponsored speaker's bureau: Medtronic, JW Pharmaceutical
- Stock shareholder:
- Spouse/partner:
- Other support (please specify):

XXVII IFSO World Congress

Introduction

- ✓ Myosteatosis ;
 - 1) Ectopic adipose tissue infiltration in skeletal muscle
 - 2) it is considered to be associated with metabolic disorder in recent studies
- ✓ CT-derived measurement of myosteatosis reveals Muscle Quality

Metabolic & bariatric surgery (MBS) ; induces not only profound loss of fat mass, but also substantial loss of lean mass -> Does MBS negative affect muscle quantity and quality?

Purpose

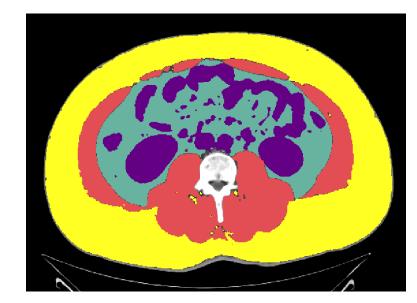
This study aims to assess **the influence of bariatric surgery on myosteatosis** in morbidly obese patients

XXVII IFSO World Congress

Patients and Methods

Patients

- (1) Prospective longitudinal observation for postoperative 1 yr with informed consent
- (2) From 2019.11 to 2022.03 at Seoul National University Hospital (SNUH)
- (3) Morbidly obese group (n=40) : patients receiving bariatric surgery with $BMI \ge 30 kg/m^2$
- (4) Non-obese group (n=41): patients receiving gastrectomy for EGC with BMI < 25kg/m²
- Clinical data collection for 1yr after surgery ;

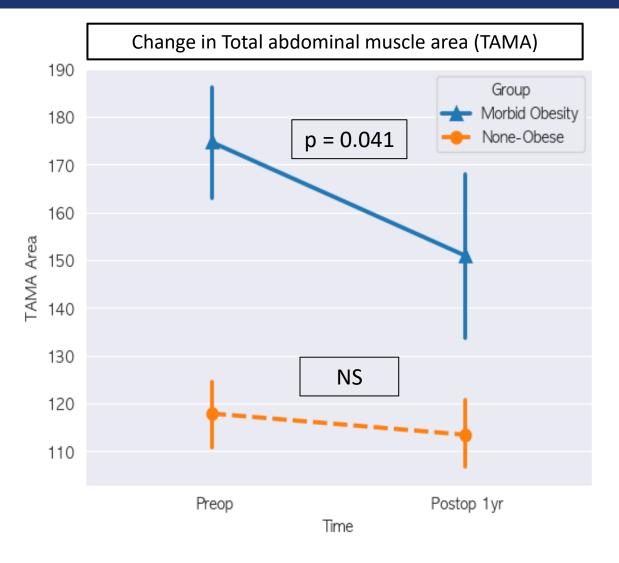

age, sex, BMI, comorbidity, type of surgery, lab data incl. DM & lipid panels

- CT scan image measurement at preop & postop 1 yr ;
 - muscle volume & Hounsfield unit (HU) at L3 level
 - analyzed by Deep learning-based body composition analysis

(DEEPCATCH, version 1.2.0, MEDICALIP Co. Ltd.)

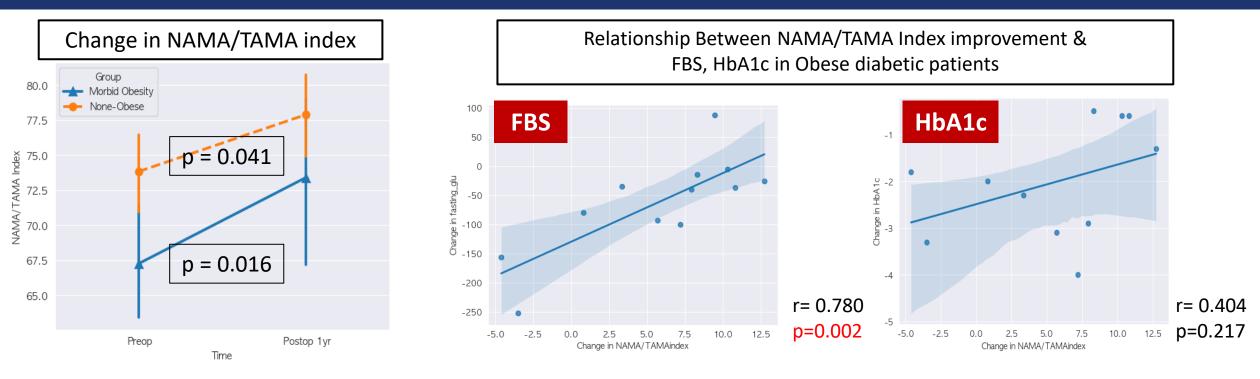
<Definition of muscle area>

- Total abdominal muscle area (Total AMA)
- Normal attenuation muscle area
- (Normal AMA) : +30 ~ +150 HU
- Low attenuation muscle area
- (Low AMA) : -29 ~ +29 HU
- NAMA/TAMA index
- = NAMA/TAMA x 100



XXVII IFSO World Congress

Results (1)


Characteristics (n=81)		Morbid Obese (N = 40)	Non-obese (N=41)	p value
Age (year \pm SD)		36.1±11.8	63.6±9.8	<0.001
Sex	Male	16 (40.0%)	24 (59.0)	1.000
	Female	24 (60.0%)	17 (41.0)	
BMI (kg/m $^2\pm$ SD)		40.1±5.5	22.9±2.0	<0.001
Surgery type	Sleeve	35 (87.5%)		
	Bypass	5 (12.5%)		
Diabetes		21 (52.0%)	21 (51.0%)	1.000
FBS (mg/dL)		130.0±59.9	112.7±26.3	0.482
HbA1c (%)		6.8±1.8	6.3±0.8	0.596
HOMA-IR		7.0±6.0	2.3±1.0	<0.001
subcutaneous fat area (SFA, cm²)		428.6±132.5	120.8±46.6	<0.001
abdominal visceral fat area (AVF, cm ²)		232.7±85.9	86.2±56.7	<0.001
AVF/SFA Ratio		0.62±0.40	0.81 ± 0.61	0.331
Total AMA (cm ²)		174.7±40.5	117.9±22.7	<0.001
Normal AMA (cm ²)		118.7±40.5	88.0±24.5	<0.001
Low AMA (cm ²)		52.3±22.4	28.5±8.4	<0.001
NAMA/TAMA		67.3±12.8	73.8±9.2	<0.05

XXVII IFSO World Congress

Results (2)

Conclusion

- Changes in body composition after bariatric surgery \rightarrow Not only fat but also muscle quantity decreases.
- Myosteatosis associated with muscle quality, measured by NAMA/TAMA index, is improved after bariatric surgery.

XXVII IFSO World Congress

