

Lifestyle Interventions First, Foremost, Forever

Professor Gary Wittert MBBCh, MD, FRACP, FAHMS Adelaide Medical School and South Australian Health and Medical Research Institute University of Adelaide

Micronutrient deficiencies in people living with obesity

 Energy dense, micronutrient poor diets 	Prevalence of	Prevalence of micronutrient deficiency			
 Obesity related metabolic changes, inflammation and g 	ut flora Micronutrient	Obesity	Diabetes		
affect micronutrient absorption and metabolism	Thiamine B1	15–29%	17–79% ^a		
Calorie restriction without optimising dietary micronut	rient Pyridoxine B6	0–11%	—		
content exacerbates pre-existing deficiencies.	Cobalamin B12	3–8%	22%		
• One third of older people with obesity have poor overa	Folic Acid	3-4%	_		
nutritional status - decreased functional capacity, impaid balance and gait, falls, and depressed mood	irment in ^{Ascorbic acid}	35–45%	b		
Sovsal P et al. Aging Clin Exp Res. 202	Vitamin A	17%	—		
Pellegrini M, et al. J Endocrinol Invest. 2021	Vitamin D	80–90% ^c	85–90% ^c		
McKay J et al BMC Nutr. 2020 Jalali M et al. Biomed Res Int. 2022	Vitamin E	0%	0%		
Kobylińska M et al. Obes Facts. 2022	Zinc	14–30%	—		
	Chromium	—	20–40%		
	Selenium	58%	—		

Risk of premature mortality is not only about obesity

Ratio Metabolically Metabolically Metabolically Metabolically Metabolically Metabolically Healthy, Normal Healthy, Healthy, Obese Unhealthy, Unhealthy, Unhealthy, Obese Weight Overweight Normal Weight Overweight

Risk of death

2

1.5

0.5

Even less so if measured by BMI

Adoption of healthy lifestyle without weight loss reduces risk from unfavourable to favourable across all weight categories

■ Normal weight ■ Overweight ■ Obese

Matheson EM et al J Am Board Fam Med 2012

Ahima and Lazar, Science, 2013

High body weight variability increases mortality

Korean Genome and Epidemiology Study:16-year prospective cohort study, N=3608 participants

Tae Jung Oh et al J Clin Endocrinol Metab, 2019

Cologne J. et al JAMA Netw Open. 2019 Choi D et al Sci Rep. 2019 Body-Weight Variability and Rates of Coronary and Cardiovascular Events as a Function of Baseline Body-Mass Index. (N = 9509)

Adjusted models, quintile with highest variation compared to lowest variation in body weight. **Risk of events:**

Coronary 64% higher,

CV 85% higher,

Death 124% higher.

Bangalore, S et al N Engl J Med 2017

Adverse Health Effects of Ultra Processed Foods

Dose response relationships between greater exposure to ultraprocessed food and adverse health outcomes

Outcome	Equivalent odds ratio (95% Cl) Equivalent odds ratio (95% Cl)		k	Credibility	GRADE	
Mortality						
All cause mortality (dose)	1.02 (1.01 to 1.03)		•	9	III	Moderate
Cardiovascular disease related mortality (dose)	1.05 (1.02 to 1.08)			5	IV	Low
Heart disease related mortality (dose)	1.18 (0.95 to 1.47)		•	<u> </u>	V	Low
Cancer						
Breast cancer (dose)	1.03 (0.98 to 1.09)	-		3	V	Low
Colorectal cancer (dose)	1.04 (1.01 to 1.07)		-+-	5	IV	Low
Prostate cancer (dose)	0.99 (0.97 to 1.02)		-	3	V	Moderate
Cardiovascular Health						
Cardiovascular disease events combined (dose)	1.04 (1.02 to 1.06)		-+-	8	Ш	Low
Cardiovascular disease morbidity (dose)	1.04 (1.02 to 1.06)		-+-	2	Ш	Low
Metabolic Health						
Abdominal obesity (dose)	1.05 (1.02 to 1.07)			6	Ш	Low
Obesity (dose)	1.07 (1.03 to 1.11)			7	Ш	Low
Overweight (dose)	1.06 (1.03 to 1.10)			2	Ш	Low
Overweight + obesity (dose)	1.03 (1.01 to 1.06)		-+	3	IV	Moderate
Type 2 diabetes (dose)	1.12 (1.11 to 1.13)		\$	7	Ī	Moderate
		0.9	1	1.5		

Ultra-processed food consumption and risk of cancer, CVD, T2D, and cancer

Forest plot of Hazard Ratios

without BMI adjustment with BMI adjustment

	Cases	PY	HR(95% CI)
₽ -1	21 917	2 740 014	1.01 (1.00,1.03)
→ →1			1.01 (1.00,1.03)
-∎-1	10 939	2 740 014	1.06 (1.04, 1.08)
⊢♦ −1			1.05 (1.03, 1.07)
• ∎→	11 322	2 740 014	1.11 (1.10, 1.13)
⊢ €1			1.07 (1.05, 1.08)
I I I 0.9 1 1.1 Ratio per 1 SD increase in ultra-processed	I 1.2 I foods (95% C)	
F	0.9 1 1.1 Ratio per 1 SD increase in ultra-processed	Cases 21 917 + 10 939 + 11 322 + 0.9 1 1.1 1.2 Ratio per 1 SD increase in ultra–processed foods (95% C	Cases PY 21 917 2 740 014 + 10 939 2 740 014 + 11 322 2 740 014 + 11 322 2 740 014 + 11 322 2 740 014 + 11 322 2 740 014 + + 11 322 2 740 014 + + 12 32 2 740 014 + + + 12 32 14 32 0.9 1 1.1 1.2 12 32 Ratio per 1 SD increase in ultra-processed foods (95% CI) 14 32 14 32

Cordova, R et al , The Lancet 2023

Overall diet quality has a stronger influence on longterm health than ultra-processed food consumption.

Fang, Z et al BMJ 2024

The Importance of Dietary Quality in weight loss interventions

Less of a nutritionally insufficient diet is not necessarily of benefit even if weight is lost

	LCD (n=19)	CSIRO(n=12)	LCD# (n=9)	CSIRO (n=7)
	8 weeks	8 weeks	52 weeks	52 weeks
Weight (kg)	$-9.5 \pm 4.8^{**}$	- 4.8 ± 2.7**	-12.9 ± 3.8**	-8.1 ± 6.3**
Waist circumference (cm)	- 12.1±4.8**	- 5.4 ± 4.1**	-15.2 ± 6.1**	-7.7 ± 5.4**
Plasma hsCRP (mg/L)	1.2 ± 4.4	$-4.1 \pm 5.8*$	0.49 ± 1.87	-4.4 ± 3.7*
Plasma IL-6 (pg/ml)	$\textbf{0.6} \pm \textbf{1.7}$	- 1.4 ± 1.8*	0.04 ± 0.60	-1.10 ± 0.86*
Plasma sE-selectin (ng/dl)	- 11.8±11.5*	- 19.0 ± 16.9*	-12.0 ± 11.4*	-30.4 ± 13.7**

Khoo J Wittert G et l, et al J Sex Med. 2011 Oct;8(10):2868-75

Weight Loss and Lean Body Mass

- Weight loss by diet, pharmacotherapy or surgery causes loss of muscle and bone
- Substantially mitigated by resistance exercise
- Accelerated by increased lean mass loss

Study	Blundell et al., 2017		McCrimmonn et al., 2020		Wilding et al., 2021	
Dose	Once weekly, 1mg		Once weekly, 1mg		Once weekly, 1mg	
Duration	12 w	eeks	52 weeks		68 weeks	
Funder	Novo N	Nordisk	Novo Nordisk		Novo Nordisk	
Change in	Fat Mass	Lean Mass	Fat Mass	Lean Mass	Fat Mass	Lean Mass
Composition	-3.5kg	-1.1kg	- 3.4kg	-2.3kg	-8.36kg	-5.36kg

Anthropometric effects of a 2-year WW program on middle aged and older men with and without testosterone treatment

Placebo Testosterone

Wittert G, et al, Lancet Diabetes and Endocrinology, 2021

Is there a dietary pattern for optimal health?

	Low-carbohydrate	Low-fat/ vegetarian/vegan	Low-glycemic	Mediterranean	Mixed/balanced	Paleolithic	
Health benefits relate to:	Emphasis on restriction of refined starches and added sugars in particular.	Emphasis on plant foods direct from nature; avoidance of harmful fats.	Restriction of starches, added sugars; high fiber intake.	Foods direct from nature; mostly plants; emphasis on healthful oils, notably monounsaturates.	Minimization of highly processed, energy-dense foods; emphasis on wholesome foods in moderate quantities.	Minimization of processed foods. Emphasis on natural plant foods and lean meats.	
Compatible elements:	Limited refined starches, added sugars, processed foods; limited intake of certain fats; emphasis on whole plant foods, with or without lean meats, fish, poultry, seafood.						
And all potentially consistent with:	Food, not too much, mostly plants ^{a,b,c} .						

Mixed or Balanced Diets

Figured prominently in the intervention trials of the National Institutes of Health (NIH). The Dietary Approaches to Stop Hypertension (DASH) diet and the dietary pattern used in the Diabetes Prevention Program (DPP)

A diet of minimally processed foods close to nature, predominantly plants, is decisively associated with health promotion and disease prevention and is consistent with the salient components of seemingly distinct dietary approaches

Lyon (Mediterranean) Diet

Very low - refined carbohydrate and processed foods Low - saturated fat

High - monounsaturated fat, antioxidants, potassium, fiber Adequate - protein

- LDL cholesterol reduction
- Elevates HDL
- Triglyceride reduction
- Anti-inflammatory
- Anti-hypertensive

All cause mortality reduced by 70%

Ethics committee stopped study prematurely to make results available to the public immediately

Strict adherence to a Mediterranean diet reduced

- Risk of dying from cancer 9%
- Risk of dying from CV disease 6%
- Risk of developing Parkinson's and Alzheimer's 13 %

Cumulative survival without non-fatal MI or major secondary end points

De Lorgeril et al. Lancet 1994, Circulation 1999

7 popular diets & CV events in at risk patients Systematic review & network meta-analysis

Dietary Best Bets

and Eggs Moderate porti every two day Cheese

Drink Water

and Yogurt

Others, at least

Vegetables

(mostly whole)

Beans, Nuts

Legumes and Seeds,

Herbs

and Spices

Base every meal on these foods

Olive oil,

Grains

- Avoid processed foods
- Eat more plant-based foods than animal foods
- choose wholegrains and legumes over refined grains.

Eat fish and chicken, eggs and dairy

Some red meat

Avoid processed meat.

Drink water

- Eat in phase with the normal circadian rhythm
- Go without eating for 8-12 hours a day i.e. overnight.

Alcohol - major contributor to weight gain, impedes weight loss, disrupts sleep, increases cancer and T2D risk and does not have a CVD (or any other benefit)

Chrononutrition and Intermittent Fasting

Sleep Restriction

Intermittent early time-restricted eating versus calorie restriction and standard care in adults at risk of T2D

AUS-D risk score ≥12, age, 35–75 years N = 209, 58 ± 10 years, 34.8 ± 4.7 kg m 3 groups (1:2:2) – 6-month intervention and 12 months follow-up

Change from Baseline to month 6 and 18

- Control (SC);
- Caloric restriction (CR) 70% of daily energy requirement
- Intermittent Time Restricted Intake (iTRE) 30% energy requirement 8am-12pm 3 non-consecutive days. Ad lib eating on other days.

No difference in weight, fat mass or fat free mass, WC -5.10 vs -1.66

Helbronn, Wittert et al. Nature Med, 2023

P Values iTRE vs CR

Obesity is a highly heterogenous condition

- Age of onset
- Associated abnormalities and presumptive cause
- Dependence on how you define and measure the excess adipose tissue, age, sex and various the risk modifiers
 - Amount & distribution of fat
 - Muscle mass and function
 - Level of physical activity
 - Nutritional sufficiency
 - Sleep
 - Stress
 - Other health behaviours & exposures (smoking, alcohol consumption, environmental toxins)
- The effects on physical and psychological function
- Psychosocial and environmental factors
- Response to treatment

Metabolic heterogeneity in weight loss in response to intervention

Skeletal Muscle Mass and Physical Activity

- People with obesity have more muscle mass but poorer muscle quality
- Weight loss by decreasing energy intake (incl pharmacotherapy and surgery) reduces muscle mass.
- Weight loss improves global physical function.
- Adequate intake of high-quality protein reduces the loss of muscle mass.
- Both endurance- and resistance exercise help preserve muscle mass during weight loss. Resistance has the greater effect. Both have metabolic benefits independent of weight loss.
- Resistance-type exercise improves muscle strength and lower HbA1c independent of fat mass Jansson AK, BMJ Open 2022 Cava, E et al Advances in Nutrition 2017

A recent systematic review and network meta-analysis:

The most effective strategy for nearly all body composition outcomes during energy restriction was combining energy restriction with resistance training or mixed exercise and high (adequate) protein.

Role Modelling Healthy Behaviours an Promoting Healthy and Supportive Environments

- The food environment impacts human health
- Ready availability of highly hedonic, energy dense, nutrient limited foods impairs health
- Healthy choice should be the only choice
- This approach is environmentally sustainable

Creating and supporting a healthy food environment

Obesity is a chronic lifelong condition. Whether ameliorated by pharmacotherapy or surgery – lifestyle measures and attention to psychosocial function are pivotal

- Personalised management requires integration of nutrition and physical activity with pharmacotherapy, metabolic surgery, behavioural and psychosocial approaches.
- Hypocaloric, nutrient dense diet, adequate protein, appropriately timed with avoidance of snacking and resistance as well as aerobic activity
- Advocacy for a supportive environment and avoidance of stigma are essential elements for successful long-term outcomes
- Good health rather than weight loss should be the goal

Thank You