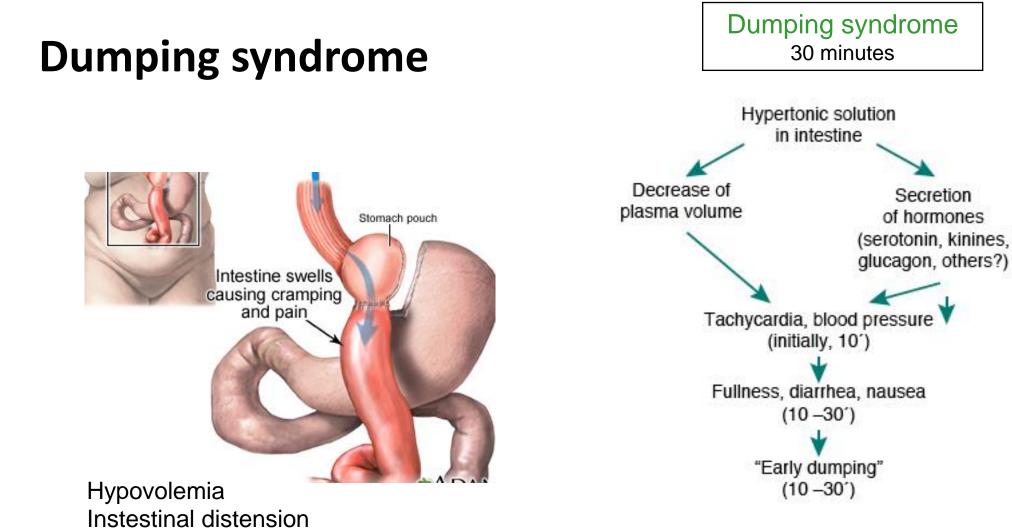

Is it dumping and/or hypoglycemia how do I know and what to do?

Prof Francois Pattou University Hospital of Lille, France

XXVII IFSO World Congress



Post prandial syndrome

XXVII IFSO World Congress

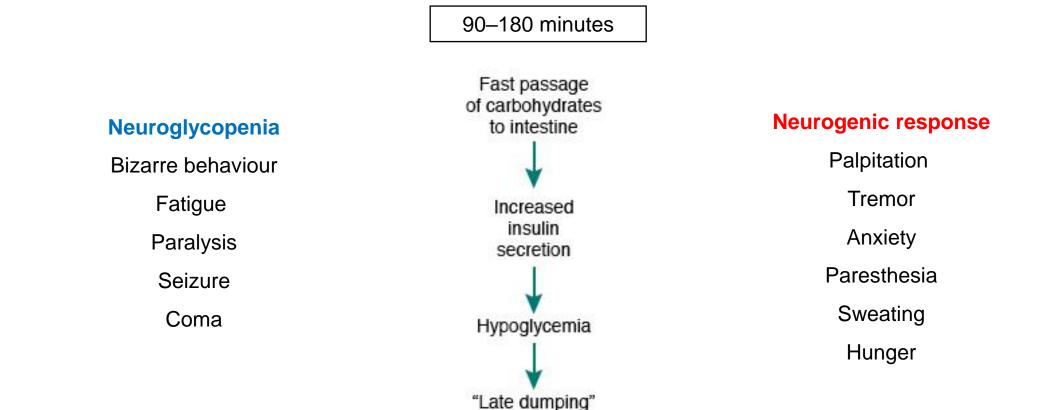
-> Sigstad / Arts questionnaires

XXVII IFSO World Congress

Sigstad clinical diagnostic score

Pre-shock or shock	+5
Loss of consciousness, faintin	g +4
Will lie down or sit	+4
Dyspnea	+3
Physical fatigue, exhaustion	+3
Sleep, listlessness, blurred visio	
Palpitation	+3
Restlessness, agitation	+2
Dizziness, vertigo	+2
Headache	+1
Feeling hot, sweating, paleness, clan	1 http://www.immy.skin +1
Nausea	+1
Abdominal distension, meteori	sm +1
Borborygm	+1
Eructation	-1
Vomiting	-4

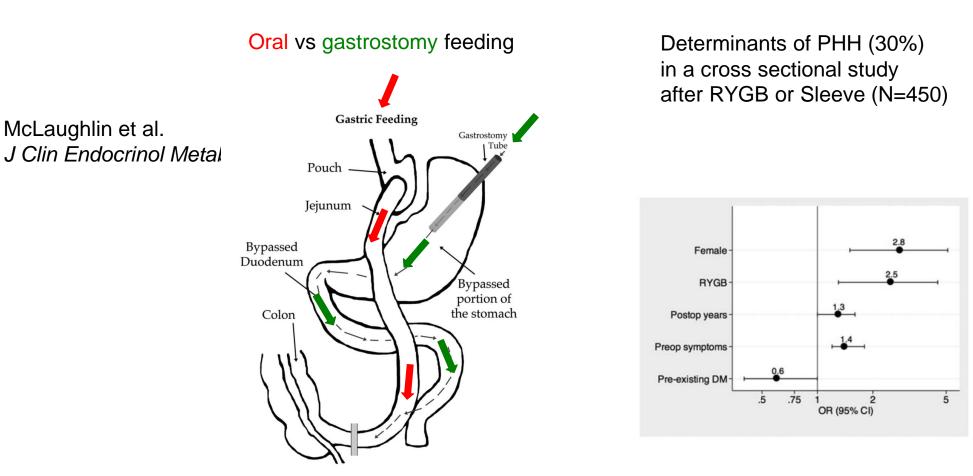
> 7 dumping


XXVII IFSO World Congress

 ≤ 4

unlikely

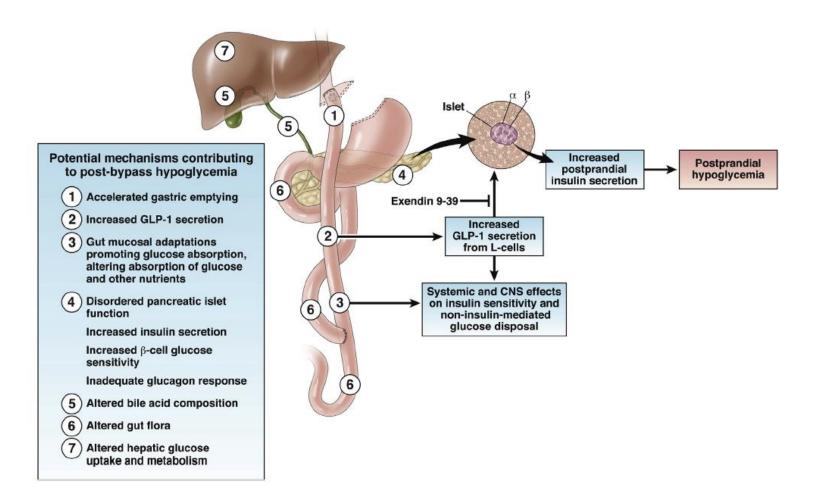
Postprandial hyperinsulinic hypoglycemia (PHH)



(90-180')

XXVII IFSO World Congress

Causal relation between RYGP and PHH

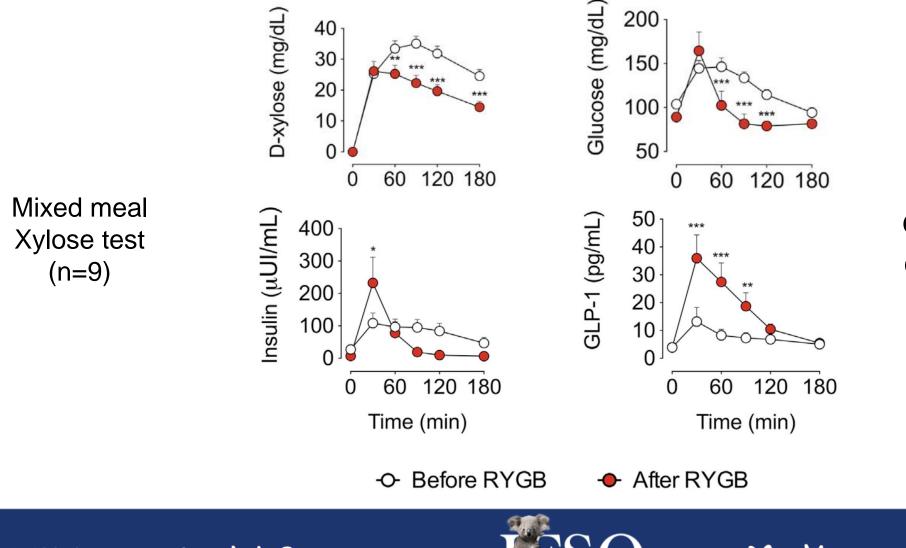


Lee et al. *Obesity* 2015

XXVII IFSO World Congress

Potential mechanisms

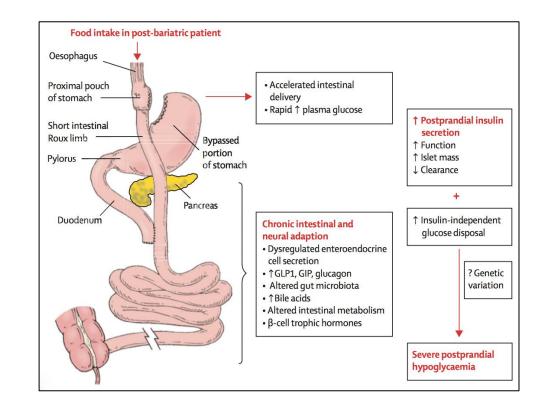
XXVII IFSO World Congress


Accelerated gastric emptying / blood glucose

Mixed meal Xylose test (n=5)Oral 30 g Jejunal 30 g Blood Glucose (mg/dL) 90 6 1500-300 20 p < 0.001 p = 0.13p < 0.001 p < 0.001Cumulative AUC Ra D-Xylose Insulin (µIU/mL) 100-Ra D-Xylose (mg/kg/min) 2 0 0 0 60_120180 Time (min) 60_120 180 Time (min) 60_120 180 Time (min) 60_120180 Time (min) 300 300 300 300 0 0 0 0

XXVII IFSO World Congress

Roux-en-Y gastric bypass / post prandial glucose



Gregory Baud et al. *Cell Metabolism 2016*

XXVII IFSO World Congress

The rollercoaster of post-bariatric hypoglycaemia

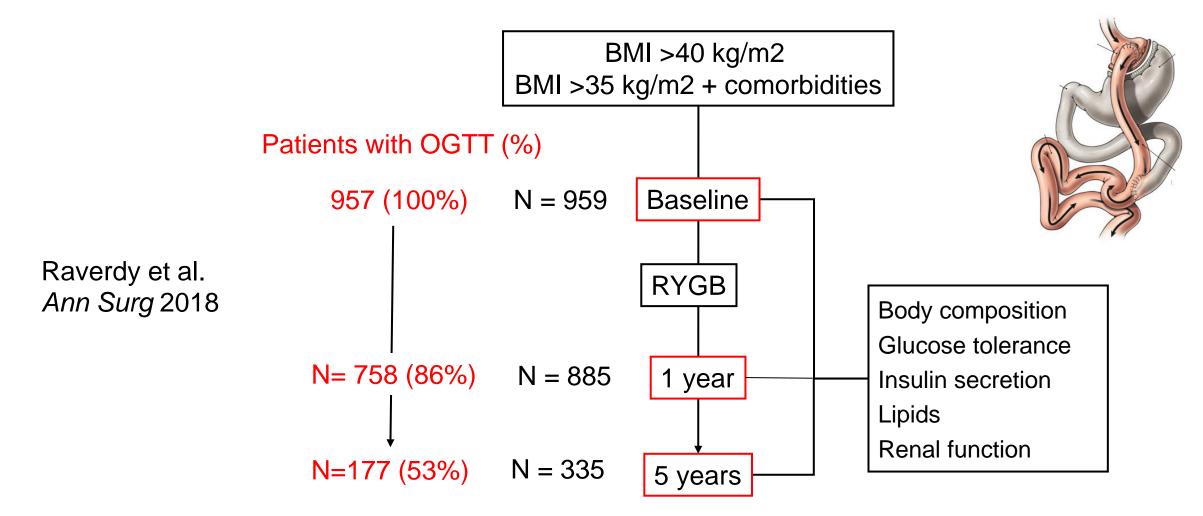
Several key questions remain

Prevalence is uncertain (0.1 to 30%) but likely underestimated Biological determinants are unknown ? Is PHH associated with weight regain, long term cognitive function ? Best treatment ? Is there any preoperative

predictive factors ?

-> Longitudinal studies are crucial to answer these questions

XXVII IFSO World Congress

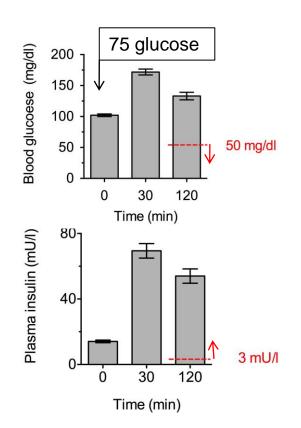

Patti & Goldfine

Lancet Diabetes

Endocrinol 2016

PHH study in ABOS prospective cohort

XXVII IFSO World Congress



Metabolic assessment

Standard Oral glucose tolerance test (OGTT) repeated at baseline / 1 year / 5 years after laparoscopic Roux en Y gastric bypass (RYGB) Post prandial hyperinsulinemic hypoglycemia (PHH) = blood glucose < 50 mg/dl at 120 mn AND plasma insulin > 3mU/l Beta cell function ->Insulinogenic index : $(Ins_{30} - Ins_0) / (Glc_{30} - Glc_0)$ Phillips et al Diabet Med 1994 Insulin sensitivity -> Matsuda index : 10,000 / sqrt ((Glc₀ x Ins₀) x (Glc₁₂₀ x Ins₁₂₀) Matsuda & de Fronzo, Diabetes Care 1999

Beta cell mass

-> Meier index : C-peptide₀ / Glc₀ Meier et al *Diabetes* 2009

XXVII IFSO World Congress

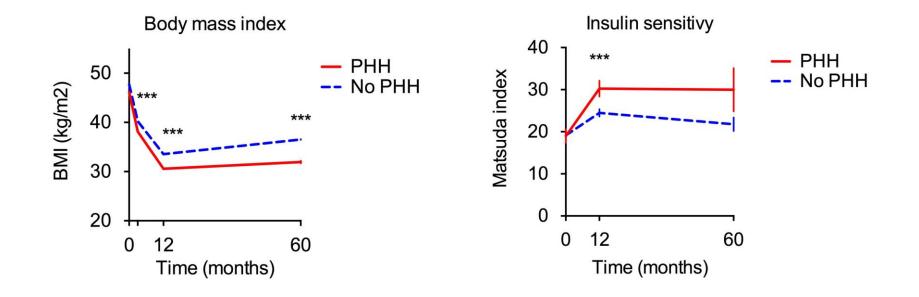
PHH prevalence during 5 years after RYGB

	All patients at each visit			Patients who completed all 3 visits		
	Baseline (n=957)	12 months (n=758)	60 months (n=177)	Baseline (n=161)	12 months (n=161)	60 months (n=161)
Female gender; n (%)	711(74.3)	557 (73.5)	133 (75.1)	121 (75.2)		
Age (yr)	43.0±16.0	44.0±16.0***	50.0±16.0 ***	45.0±14.0	46.0±14.0***	50.0±14.0***
BMI (kg/m²)	46.3±10.3	32.4±7.9***	34.5±8.0***	47.2±11.3	33.2±7.7***	34.4±8.3***
Weight loss (%)	-	30.8±11.1	26.9±16.4	-	30.2±11.1	26.7±16.2
Type 2 diabetes; n (%)	355 (37.1)	139 (18.3)***	35 (19.8)***	69 (42.9)	31 (19.3)***	32 (19.9)***
Dyslipidemia; n (%)	580 (60.6)	241 (31.8)***	89 (50.3)***	101 (62.7)	65 (40.4)***	82 (50.9)***
Hypertension; n (%)	542 (56.6)	282 (37.2)***	77 (43.5)***	102 (63.4)	69 (42.9)***	69 (42.9)***
HBA1C; %	5.9±1.2	5.4±0.6***	5.5±0.8***	6.1±1.1	5.6±0.5***	5.5±0.7***
Fasting glucose; mg/dL	102.0±33.1	87.8±12.4***	92.9±19.3***	102.9±37.3	88.8±15.4***	92.9±19.3***
Fasting insulin; nmUIL	14.1±12.3	5.3±3.9***	5.6±5.1***	13.0±10.8	5.2±3.7***	5.6±4.7***
Fasting C peptide; ng/mL	3.9±1.9	2.1±0.9***	2.2±1.1***	4.1±1.9	2.1±1.1***	2.2±1.0***
HOMA2-B [*]	118.0±74.6	88.1±36.7***	82.0±41.7***	114.0±75.8	86.1±35.0***	81.5±42.9***
HOMA2-S [*]	48.7±38.3	117.6±71.8***	102.6±72.3***	50.1±37.8	118.4±75.0***	106.3±69.8***
Beta cell mass [‡]	0.4±0.2	0.2±0.1***	0.2±0.1***	0.3±0.2	0.2±0.1***	0.2±0.1***
Insulinogenic index [¶]	0.8±1.1	0.6±0.8	0.5±0.7	0.5±0.9	0.5±0.6	0.5±0.7
Matsuda index [⊮]	11.8±15.0	20.3±17.9***	17.5±20.2	12.3±14.1	21.0±16.9***	17.5±19.9*
PHH; %	5 (0.5)	69 (9.1)***	14 (7.9)***	1 (0.6)	10 (6.2)***	12 (7.5)***

XXVII IFSO WORVERGEBYGREBSO.001 VEBaseline (Mixed model for epetited there are 2024

Clinical biological profile associated with PHH

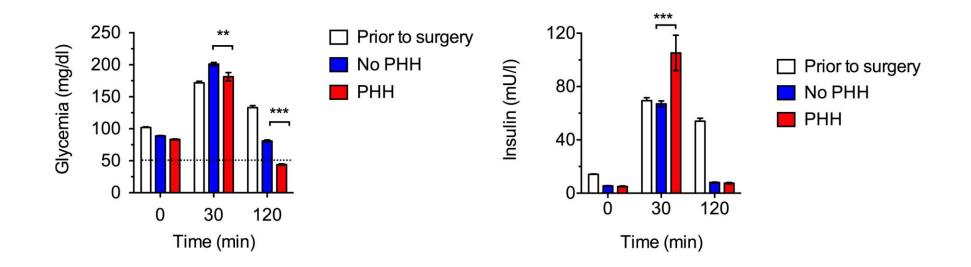
Table 2. Clinical and biological characteristics associated with PHH in patients submitted to RYGB at anytime during follow-up


	No PHH N =853	PHH N = 83	Univariate analysis P	Multivariate analysis P'
Female gender; n (%)	627 (73.5)	63 (75.9)	0.697	-
Type 2 diabetes; n (%)	173 (20.3)	2 (2.4)	<0.001	0.987
Age; year	50.0 ± 17.0	47.0 ± 15.5	0.109	0.005
Weight loss; kg	29.7 ± 11.7	35.0 ± 11.6	<0.001	0.031
Fasting blood glucose; mg/dL	88.9 ± 15.1	83.8 ± 6.5	<0.001	0.102
Fasting plasma insulin; nmUIL	5.3 ± 4.2	5.0 ± 3.3	0.114	0.158
Fasting plasma C peptide; ng/mL	2.2 ± 1.0	2.0 ± 0.8	0.009	0.061
HOMA2-B [£]	85.8 ± 37.0	98.6 ± 33.4	0.002	0.006
HOMA2-S [£]	116.0 ± 74.5	118.0 ± 64.2	0.417	-
Beta cell mass [‡]	0.2 ± 0.1	0.2 ± 0.1	0.381	-
Insulinogenic index [¶]	0.5 ± 0.8	1.0 ± 1.1	<0.001	0.002
Matsuda index ^ಱ	18.5 ± 17.8	29.7 ± 15.8	<0.001	<0.001

XXVII IFSO World Congress

Weight loss and insulin sensitivity

80 patients with PHH vs 877 patients with no PHH after RYGB

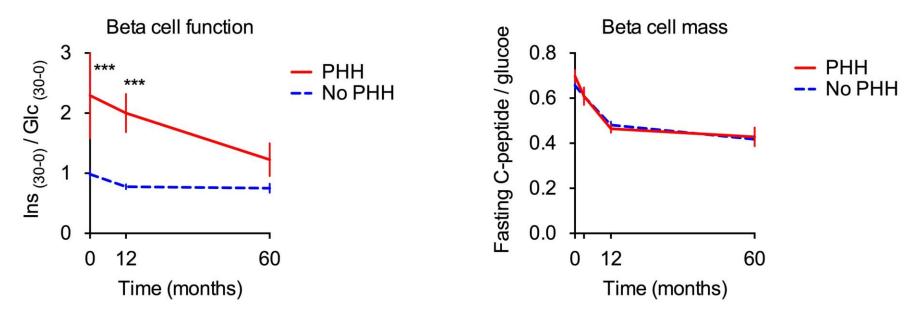

Raverdy et al. Ann Surg 2018

XXVII IFSO World Congress

Post prandial glucose response after RYGB

936 postoperative OGTT -> 83 PHH (21-49 mg/dl) in 80 patients (M12 and/or M60)

Raverdy et al. Ann Surg 2018


XXVII IFSO World Congress

Beta cell function and mass

80 patients with PHH vs 877 patients with no PHH after RYGB

Raverdy et al. Ann Surg 2018

XXVII IFSO World Congress

Predictive factors of PHH

Table 3 : Baseline clinical and biological characteristics of PHH patients and those without PHH at any time after RYGB

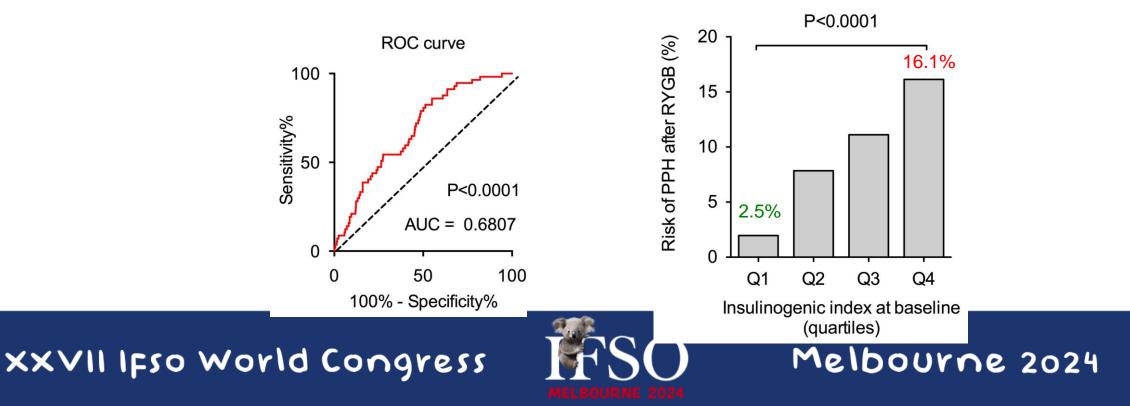
	No PHH	PHH	Univariate analysis	Multivariate analysis
Preoperative value	N =877	N = 80	Р	P'
Female gender; n (%)	649 (74.0)	62 (77.5)	0.593	NA
Age; year	43.0 (34.0 ; 51.0)	42.0 (33.8 ; 49.0)	0.332	NA
Type 2 diabetes; n (%)	344 (39.2)	11 (13.8)	<0.001	0.162
Body mas index; kg/m2	46.4 (42.2 ; 52.7)	44.4 (41.0 ; 49.6)	0.051	0.056
Fasting blood glucose; mg/dL	103.1 (92.9 ; 129.3)	95.4 (89.8 ; 107.3)	<0.001	0.579
Fasting plasma insulin; nmUIL	14.2 (9.1 ; 21.7)	12.6 (8.9 ; 18.2)	0.076	0.800
Fasting plasma C peptide; ng/mL	3.9 (3.1 ; 5.0)	3.7 (3.0 ; 4.5)	0.158	0.403
HOMA2-B [£]	117.6 (83.5 ; 159.8)	127.5 (91.3 ; 158.2)	0.179	0.629
HOMA2-S [£]	48.0 (32.7 ; 71.1)	53.6 (37.3 ; 73.0)	0.170	0.911
Beta cell mass [‡]	0.35 (0.27 ; 0.45)	0.36 (0.29 ; 0.43)	0.424	NA
Insulinogenic index [¶]	0.72 (0.27 ; 1.35)	1.23 (0.68 ; 1.99)	<0.001	0.040
Matsuda index ^ℋ	11.6 (6.8 ; 22.0)	13.3 (8.5 ; 24.9)	0.053	0.202


Raverdy et al. Ann Surg 2018

XXVII IFSO World Congress

Summary

- 1. Prevalence of PHH between 5% and 10% during 5 years after RYGB, and does not significantly increase with time
- 2. PHH after RYGB was associated with a younger age, a higher beta cell function, more insulin sensitivity, and more weight loss
- 3. Patients with high preoperative beta cell function are at higher risk to develop PHH after RYGB


Raverdy et al. Ann Surg 2018

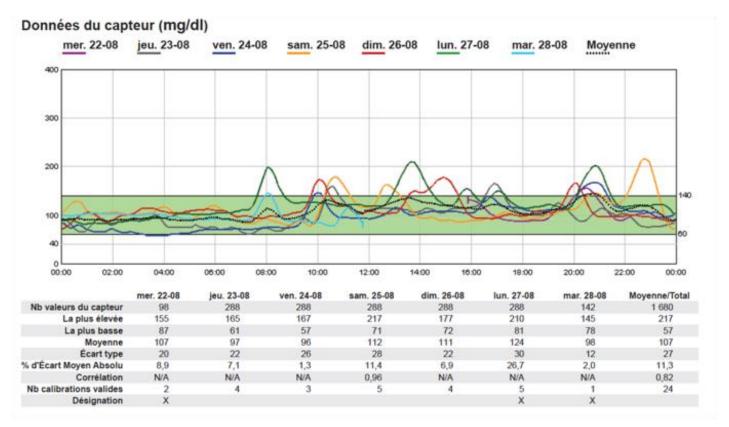
XXVII IFSO World Congress

Preoperative prediction of PHH / OGTT ?

The value of insulinogenic index $(Ins_{30} - Ins_0) / (Glc_{30} - Glc_0)$ during a 75 g oral glucose tolerance test prior to surgery can predict the risk of PHH after RYGB

what to do?

XXVII IFSO World Congress


Diet

- Split food intake in 6 meals
- Avoid high GI CHO, limit to 30g per meal
- Respect 30 min between food and fluid intake
- A « sieste » slows gastric emptying
- Increase viscosity with pec<n or guar gum
- Eat in peaceful condi<ons (avoid stress)

XXVII IFSO World Congress

Therapeutic education / CGMS

XXVII IFSO World Congress

Drugs

- Diazoxide (reduces insulin secretion)
- Acarbose (reduce glucose absorption)
- Verapamil (reduces insulin secretion)
- SMS analogs (reduces GLP1 secretion)
- SGLT2 (reeduce glucose absorption ?)

XXVII IFSO World Congress

Surgery

Gatric banding Reversal to normal anatomy

XXVII IFSO World Congress

Is it dumping and/or hypoglycemia – how do I know and what to do?

Prof Francois Pattou University Hospital of Lille, France

XXVII IFSO World Congress

