Perioperative Outcomes of Robotic versus Laparoscopic Bariatric Surgery in Australia

A propensity matched analysis

Dr. Yit J Leang^{1,2}

<u>Co-authors</u>

Dr. Chrys Hensman¹ Dr. Eldho Paul¹ Dr. Joseph Kong¹ Dr. Paul Burton^{1,2} Bariatric Robotic Interest Group (BRIG)¹ Prof. Wendy Brown^{1,2}

- 1. Department of Surgery, Central Clinical School, Monash University, VIC, Australia
- Oesophago-gastric and bariatric surgical unit, Department of Surgery, The Alfred Hospital, VIC, Australia

XXVII IFSO World Congress

Dr. Yit J Leang is supported by Australian Government Research Training Program (RTP) scholarship.

Professor Wendy Brown received grants from Johnson & Johnson, Medtronic, GORE, Applied Medical, Apollo Endosurgery, Novo Nordisc and personal fees from GORE, Novo Nordisc and Merck Sharpe and Dohme, outside of submitted work.

Other co-authors have no potential conflict of interest to declare.

XXVII IFSO World Congress

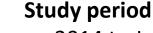
Background

- Number of metabolic bariatric surgery performed robotically has more than doubled in the last 5 years globally (IFSO registry reports)
- Associated higher costs and inconclusive evidence on superiority to conventional laparoscopic platform
 - Barrier to widespread adoption^{1,2}
- Systematic review and meta-analysis on robotic gastric bypass <u>HIGHER</u> reoperation rate (4.4% vs 3.4%)³
- Paucity of data on outcomes in Australia
 - Only 2 single center series being published^{4,5}.
- Convened robotic expert working group

<u>Aims</u>

- Evaluate the caseloads and early outcomes of robotic bariatric surgery in Australia
- Benchmark the early outcomes of robotic bariatric surgery against laparoscopic cohort
- 1. EI Chaar M, Petrick A, Clapp B, Stoltzfus J, Alvarado LA. Outcomes of Robotic-Assisted Bariatric Surgery Compared to Standard Laparoscopic Approach Using a Standardized Definition: First Look at the 2020 Metabolic and Bariatric Surgery Accreditation Quality Improvement Project (MBSAQIP) Data. OBES SURG. 2023 Jul 1;33(7):2025–39.
- 2. Bauerle WB, Mody P, Estep A, Stoltzfus J, El Chaar M. Current Trends in the Utilization of a Robotic Approach in the Field of Bariatric Surgery. OBES SURG. 2023 Feb 1;33(2):482–91.
- 3. Leang YJ, Mayavel N, Yang WT, Kong JC, Hensman C, Burton PR, Brown WA. Robotic versus laparoscopic gastric bypass in bariatric surgery: a systematic review and meta-analysis on perioperative outcomes. Surgery for Obesity and Related Diseases. 2023 Aug 16
- 4. Silverman CD, Ghusn MA. Early Australian experience in robotic sleeve gastrectomy: a single site series. ANZ Journal of Surgery. 2017;87(5):385–9.
- 5. Soon DSC, Moar X, Lee DJ, Moore P, Clough A. Australian experience with robot-assisted Roux-en-Y gastric bypass with comparison to a conventional laparoscopic series. Surg Endosc. 2022 Jun 1;36(6):4025–31.

XXVII IFSO World Congress



Methods

• Retrospective analysis of Australia Bariatric Surgery Registry (ANZBSR)

- Prospectively maintained national clinical quality and safety registry (Clinical trials ID NCT03441451).
- Captures clinical data for patients undergoing bariatric surgery across public and private hospitals in Australia.

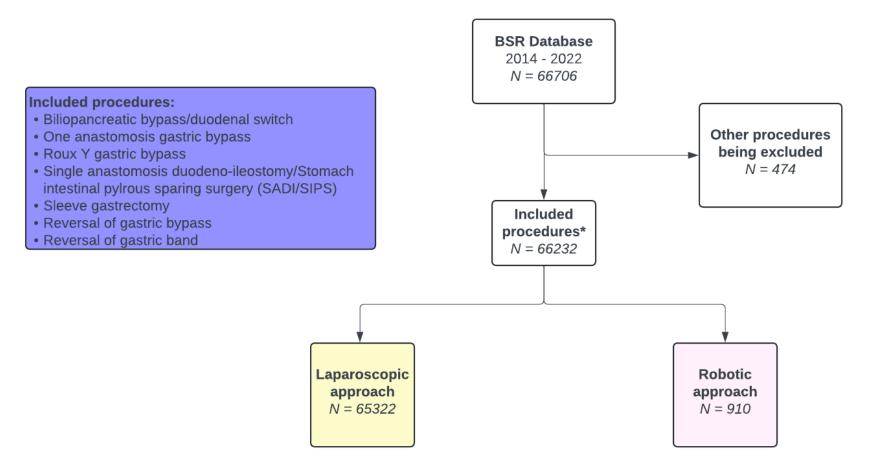
• 2014 to June 2023 (inclusive of 12-month follow up period).

- Robotic: all patients who underwent robotic bariatric surgery in Australia within study period
- Laparoscopic: all similar procedures performed laparoscopically within study period

XXVII IFSO World Congress

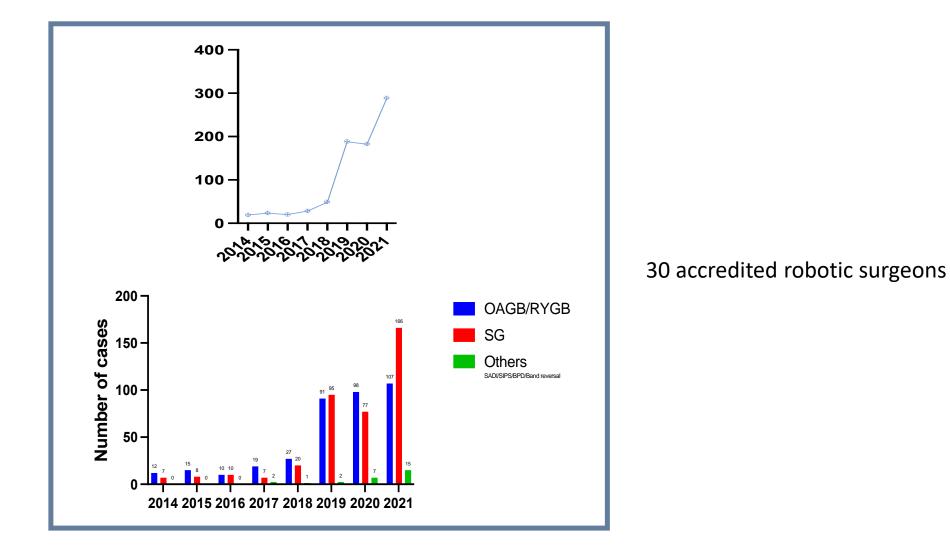
- Demographics
- Procedure type
- Primary vs Revision

- Defined Adverse Events (DAE)
 - Return to theatre
 - Unplanned ICU admission
 - Readmission to Hospital within 90 days
- Surgical Complications



The Alfred Hospital Human Research Ethics Committee (Ref 400/22)

XXVII IFSO World Congress


Flow Chart

XXVII IFSO World Congress

Number of Robotic Cases

XXVII IFSO World Congress

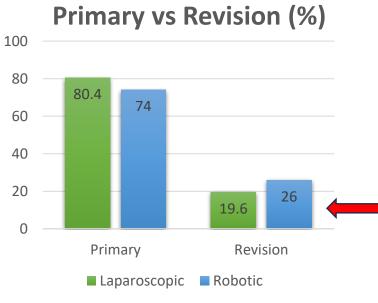
Demographics – Pre matching Cohort

Lap: 43.3 years (34.4 – 51.9) vs Robot: 46.1 years (37.0-54.2) P < 0.05

80

70 60

50


40 30

20

10

0

Lap: 11.8% Vs Robot: 15.2% P < 0.05 Lap: 40.5 (36.5-45.6) vs Robot: 40.3 (36.2-45.8)

69.1 50 41.1 P <0.05 12.9 10.5 6.2 0.8^{3.3} 0.10.5 0.2 0.1 0 0.4 0 Reversal of ... Reversal of ... Sleeve... BRDIDS SADIISIPS OAGB RYGB other*

Laparoscopic

Procedure Type (%)

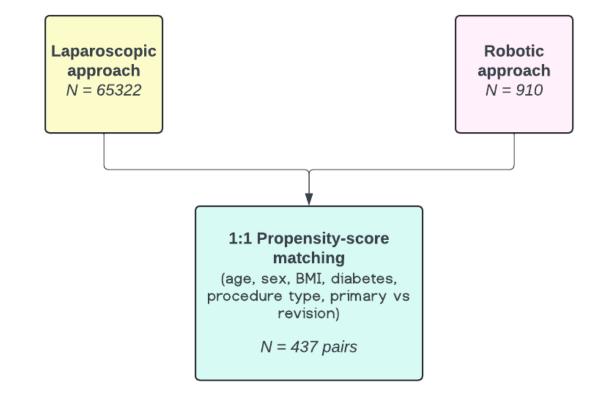
P <0.05

XXVII IFSO World Congress

Melbourne 2024

Robotic

Outcomes	Laparoscopic (%) n=65322	Robotic (%) <i>n=910</i>	P value
Mortality	13 (0.02)	0 (0)	ns
Unplanned return to theatre	<mark>904 (1.38)</mark>	<mark>32 (3.52)</mark>	<0.01
Unplanned ICU admission	<mark>84 (0.13)</mark>	<mark>10 (1.08)</mark>	<0.01
Unplanned readmission to hospital	<mark>897 (1.37)</mark>	<mark>22 (2.42)</mark>	0.01
Post operative complications (total)	<mark>2531 (3.87)</mark>	<mark>64 (7.03)</mark>	<0.01
Deep SSI/Sepsis	57/65322 (0.09)	1 /910) (0.11)	ns
Anastomotic leak	<mark>139 /15939 (0.21)</mark>	<mark>4/452 (0.88)</mark>	0.01
Post operative bleeding	145/65322 (0.22)	1/910 (0.11)	ns
Anastomotic stricture	244/15939 (1.53)	11/452 (2.43)	ns
Organ injury/perforation	64/65322 (0.1)	2/910 (0.22)	ns
BMI at 1 year, median (IQR) (kg/m²)	29.4 (26.2-33.4)	29.8 (26.5-33.9)	ns
Diabetes at 1 year	1100/20707 (5.31)	29/413 (7.02)	ns


XXVII IFSO World Congress

Secondary Analysis

1:1 Propensity Score Matching

- Sex
- Procedure type
- Primary vs revision
- Pre-op BMI
- Co-morbidities

XXVII IFSO World Congress

	Laparoscopic (%) <i>n=437</i>	Robotic (%) <i>n=437</i>	P value
Mortality	0	0	<mark>n/a</mark>
Unplanned return to theatre	11 (2.5)	12 (2.7)	ns
Unplanned ICU admission	0 (0.13)	<mark>5 (1.1)</mark>	<mark>ns</mark>
Unplanned readmission to hospital	6 (1.4)	8 (1.8)	<mark>ns</mark>
Post operative complications (total)	17 (3.9)	22 (5)	<mark>ns</mark>
Deep SSI/Sepsis	1 (0.22)	1 (0.22)	<mark>ns</mark>
Anastomotic leak	1 (0.52)	<mark>4 (2.1)</mark>	<mark>ns</mark>
Post operative bleeding	1 (0.22)	0	ns 🛛
Anastomotic stricture	3 (1.56)	2 (1.05)	<mark>ns</mark>
Organ injury/perforation	0	0	<mark>n/a</mark>
BMI at 1 year, median (IQR) (kg/m²)	29 (25.9-32.4)	29.85 (26.3-34.1)	<mark>ns</mark>
Diabetes at 1 year	11(2.5)	11 (2.5)	<mark>ns</mark>

XXVII IFSO World Congress

<u>Clinical Outcomes</u> – Comparison to international outcomes

Mortality	Laparoscopic (%) n=437 0	Robotic (%) <i>n=437</i> 0	P value <mark>n/a</mark>
Unplanned return to theatre	11 (2.5)	12 (2.7)	<mark>ns</mark>
Unplanned ICU admission	0 (0.13)	<mark>5 (1.1)</mark>	<mark>ns</mark>
Unplanned readmission to hospital	6 (1.4)	8 (1.8)	<mark>ns</mark>
Post operative complications (total)	17 (3.9)	22 (5)	<mark>ns</mark>
Deep SSI/Sepsis	1 (0.22)	1 (0.22)	<mark>ns</mark>
Anastomotic leak	1 (0.52)	<mark>4 (2.1)</mark>	<mark>ns</mark>
Post operative bleeding	1 (0.22)	0	<mark>ns</mark>
Anastomotic stricture	3 (1.56)	2 (1.05)	<mark>ns</mark>
Organ injury/perforation	0	0	<mark>n/a</mark>

Vosburg et. al. 2022

MBSAQIP database – 2015 to 2019

791,423 patients (74,010 robotic patients)

- Robotic patients had higher readmission (OR 1.21) and reoperation rate (OR 1.22)
- Robotic sleeve gastrectomy higher infectious
 complications (OR 1.26 1.76)

El Chaar et. al. 2023

MBSAQIP database – 2020

168,568 patients (propensity match analysis)

- Sleeve Gastrectomy (17,215 pairs)
 - Higher Adverse events rate 2.2% vs. 1.7%
- RYGB (6566 pairs)
 - Higher readmission rate 5.7% vs 4.3%

Wesley Vosburg R, Haque O, Roth E. Robotic vs. laparoscopic metabolic and bariatric surgery, outcomes over 5 years in nearly 800,000 patients. Obesity surgery. 2022 Jul;32(7):2341-8

El Chaar M, Petrick A, Clapp B, Stoltzfus J, Alvarado LA. Outcomes of robotic-assisted bariatric surgery compared to standard laparoscopic approach using a standardized definition: first look at the 2020 Metabolic and Bariatric Surgery Accreditation Quality Improvement Project (MBSAQIP) data. Obesity Surgery. 2023 Jul;33(7):2025-39.

XXVII IFSO World Congress

- Robotic platform promising technology but requires more data to prove superiority.
- Conform to international trends
 - Increasing number of robotic bariatric cases in Australia.
 - > Higher ratio of gastric bypass and revisional cases being performed on robotic platform.
- Australian robotic outcomes are comparable international data.
- Judicious and safe implementation of robotic technology in MBS without increase in complications.
- Highlights the importance of a robust clinical quality and safety registry especially in the period of new surgical technology introduction.

XXVII IFSO World Congress

