

Comparison of three different anastomotic methods of sleeve

gastrectomy with transit bipartition using an obese rodent model

Libin Yao

The Affiliated Hospital of Xuzhou Medical University. China

减重代谢外科中心

Commonly used Bariatric surgeries

≻SG:

Good effect of weight loss and comorbidity remission Weight regain and recurrence of diabetes

≻RYGB:

Excellent effect of weight loss and long-term Comorbidity remission **Uncapable of gastroscopy**

> other sleeve Plus procedures

Sleeve Gastrectomy with Transit Bipartition (SG-TB)

> Obes Surg. 2006 Oct;16(10):1371-9. doi: 10.1381/096089206778663841.

Digestive Adaptation with Intestinal Reserve: a neuroendocrine-based operation for morbid obesity

Sérgio Santoro ⁴, Carlos E Malzoni, Manoel C P Velhote, Fábio Q Milleo, Marco A Santo, Sidney Klajner, Durval Damiani, João G Maksoud

Santoro et al. 2006

ORIGINAL ARTICLES

Sleeve Gastrectomy With Transit Bipartition A Potent Intervention for Metabolic Syndrome and Obesity

Sentoro, Sergio MD^{*}; Castro, Luis Carlos MD^{*}; Velhote, Manoel Carlos Prieto MD, PhD, FACS⁷; Melzoni, Carlos Eduardo MD, FACS⁷; Klajner, Sidney MD, FACS^{*}; Castro, Leandro Peraodin MD^{*}; Lacombe, Arnaldo MD^{*}; Santo, Marco Aurôlio MD, PhD^{*} Author Information ⊗

Annala of Surgery: July 2012 - Volume 256 - Issue 1 - p 104-110.

2012

医附院减重代谢外科中心

Why we select SG-TB?

Potential advantages of SG-TB

- It can allow food to pass through two channels, achieving satisfactory treatment results while reducing the incidence of postoperative malnutrition and esophageal reflux
- The duodenum is not transected, and the gastrointestinal anastomosis is located in the gastric antrum. The operation is simple, with fewer postoperative complications, and is easy to master
- There is no gastrointestinal blind loop, which does not affect the examination and treatment of the upper gastrointestinal system under gastroscopy after surgery

Procedures	Roux-en-Y TB (RYTB)	One Anastomosis TB (SASI)	TB with Braun (B-TB)
Advantages	Better than SG	Simplified operation, comparable effects	Anti-bile reflux, simpler operation than RYTB
Disadvantages	Petersen hiatal hernia, complex operations	Bile reflux (5.8%)	Closure of mesenteric hiatal hernia

RYTB

SASI

B-TB

Purpose

> To investigate the effect and safety of the three SG-TB procedures

> To investigate the difference of bile reflux of the three procedures

> To explore the more beneficial anastomosis procedures for patients

Modeling

- Sixty SD(Sprague-Dawley) rats
- High-fat diet for four weeks
- Streptozotocin (STZ) (35mg/kg)
 - intraperitoneal injection

RYTB SASI BTB EJ

Five group experiment pictures

statistics

- SPSS 26.0 software was used for statistical analysis.
- Comparisons were conducted using one-way ANOVA and Bonferroni test for multiple comparisons. A significant difference was assumed when P was less than 0.05.

Results

Weight loss

	RYTB	BTB	SASI	SHAM	F	Р
Pre	360.3±2.3	358.4± 1.6	359.6±3.1	359.4±3.5	0.651	0.589
2W	306.0±7.8*	311.3±5.2*	310.4±6.0*	334.0±7.8	27.483	<0.001
4W	309.4±19.8*	320.0±7.9*	319.3±12.7*	341.4±6.7	8.819	< 0.001
6W	318 5+17 5*	326 3+8 6*	327 8+11 1*	355 8+4 3	16 337	<0.001
8W	328 9+15 5*	337 5+6 7*	336.3+10.6*	367 3+5 1	21 737	<0.001
10\/	338 4+11 9*	346.3+7.7*	344 5+11 3*	385.0+6.2	39 151	<0.001
12W	347.4± 10.4*	355.0±7.1*	353.9±12.9*	398.5±7.4	46.436	< 0.001

*means the three surgery groups compared with SHAM (p < 0.05)

FBG (Fasting blood glucose)

	RYTB	ВТВ	SASI	SHAM	F value	P value
Pre-Op	15.9±1.2	15.8±4.0	16.3±3.8	16.6±1.0	0.096	0.962
1M	5.7±0.7*	6.3±0.7*	6.1±0.6*	16.3±1.3	308.633	< 0.001
2M	6.7±1.3*	6.1±0.8*	6.4±0.9*	16.5±0.8	260.722	< 0.001
3 M	5.3±0.6*	6.2±0.6*	6.1±0.5*	17.3±2.0	209.396	< 0.001

*significant the three surgery groups compared with SHAM (*p*<0.05)

OGTT(Oral Glucose Tolerance Test)

*significant compared with SHAM (p < 0.05)

ITT (Insulin tolerance test)

*significant compared with SHAM (p < 0.05)

GLP-1

*significant compared with SHAM (p < 0.05)

ALB

	RYTB	ВТВ	SASI	SHAM	F	Р
Pre	28.1±0.7	28.0±0.8	28.3±1.0	28.5±1.8	2.954	0.050
12 W	27.25±1.1*	27.4±0.7*	28.2±1.1	30.1±2.0	6.139	0.002

Alb

*significant RYTB, BTB compared with SHAM (p < 0.05)

No significant were observed among all groups before and 12W after surgery

H&E staining (100*)

Height of esophagus mucosa (100*)

	RYTB	BTB	SASI	SHAM	EJ	F	Р
12 W	104.8±3.1*	105.7±2.0*	154.3±4.1*	100.6 ± 2.8	534.7±29.8	18.893	< 0.001
			#		*&		

*Significant RYTB, BTB compared with SHAM, (p<0.05); #Significant RYTB, BTB compared with SASI, (p<0.05); &Significant EJ compared with the other groups, (p<0.05)

The mean total bile acid concentration of gastroesophageal junction (HPLC MS/MS)

	RYTB	BTB	SASI	SHAM	EJ	F	Р
12 M	24060±7500*	27089±6564*	64983±1498 9*#	9437±1025	461437±7 8362*&	237.118	< 0.001

*Significant RYTB, BTB compared with SHAM, (p<0.05); #Significant RYTB, BTB compared with SASI, (p<0.05); &Significant EJ compared with the other groups, (p<0.05)

Conclusion

- There were no significant differences in weight loss and glycemic remission among the RYTB, BTB, and SASI groups.
- B-TB may be a superior primary procedure as it demonstrated parallel bariatric and metabolic results to the RYTB procedure and a better anti-reflux effect than the SASI procedure.

Thanks for

your attention!

