

IFSO 2024

HYBRID AND SMALL BOWEL ENDOSCOPIC PROCEDURES

Barham Abu Dayyeh, MD MPH FASGE FAGA

Director of Advanced Endoscopy Professor of Medicine Associate Research Chair for Innovation, Department of Medicine Assistant Medical Director, Business Development Mayo Clinic, Rochester MN

Abudayyeh.Barham@mayo.edu

DISCLOSURES

- **Consultant:** Boston Scientific, Olympus, Medtronic, Metamodix, BFKW, Apollo Endosurgery
- **Co-inventor:** Endogenex (licensed technology by Mayo Clinic)
- Research Support: Apollo Endosurgery, USGI, Endogastric Solutions, Boston Scientific, Medtronic, Spatz, Cairn.
- Speaker: Johnson & Johnson, Olympus, Endogastric Solutions

THE LANCET

Metabolic surgery versus conventional medical therapy in patients with type 2 diabetes: 10-year follow-up of an open-label, single-centre, randomised controlled trial

The Lancet Volume 397 Issue 10271 Pages 293-304 (January 2021)

©2022 Mayo Foundation for Medical Education and Research | slide-3

Research

JAMA | Original Investigation

Long-Term Outcomes of Medical Management vs Bariatric Surgery in Type 2 Diabetes

Anita P. Courcoulas, MD; Mary Elizabeth Patti, MD; Bo Hu, PhD; David E. Arterburn, MD; Donald C. Simonson, MD, ScD; William F. Gourash, PhD; John M. Jakicic, PhD; Ashley H. Vernon, MD; Gerald J. Beck, PhD; Philip R. Schauer, MD; Sangeeta R. Kashyap, MD; Ali Aminian, MD; David E. Cummings, MD; John P. Kirwan, PhD

Ou

Hb

Key Point:

Gut-based therapeutic interventions, particularly metabolic surgery, exhibit a potential disease-modifying effect on Type II diabetes mellitus. This is evidenced by a substantial reduction in insulin usage over a 7-year period (16% versus 56%), alongside improved glycemic control.

Medical/lifestyle			Bariatric surgery			Group comparison	
Baseline (n = 96)	Year 7 (n = 82)	Change (95% CI) ^b	Baseline (n = 166)	Year 7 (n = 136)	Change (95% CI)	Difference in change ^c	P value
8.2 (1.2)	8.0 (1.8)	-0.2 (-0.5 to 0.2)	8.7 (1.7)	7.2 (1.4)	-1.6 (-1.8 to -1.3)	-1.4 (-1.8 to -1.0)	<.001
11.7	26.7	2.77 (1.38 to 5.54)	15.5	54.1	6.42 (3.63 to 11.4)	3.22 (1.76 to 5.88)	<.001
41.7	56.0	1.93 (1.07 to 3.46)	50.6	16.0	0.18 (0.11 to 0.31)	0.13 (0.06 to 0.29)	<.001
	Medical/lifes Baseline (n = 96) 8.2 (1.2) 11.7 41.7	Medical/lifestyle Baseline (n = 96) Year 7 (n = 82) 8.2 (1.2) 8.0 (1.8) 11.7 26.7 41.7 56.0	Medical/lifestyle Baseline (n = 96) Year 7 (n = 82) Change (95% CI) ^b 8.2 (1.2) 8.0 (1.8) -0.2 (-0.5 to 0.2) 11.7 26.7 2.77 (1.38 to 5.54) 41.7 56.0 1.93 (1.07 to 3.46)	Medical/lifestyle Bariatric surger Baseline (n = 96) Year 7 (n = 82) Change (95% CI) ^b Baseline (n = 166) 8.2 (1.2) 8.0 (1.8) -0.2 (-0.5 to 0.2) 8.7 (1.7) 11.7 26.7 2.77 (1.38 to 5.54) 15.5 41.7 56.0 1.93 (1.07 to 3.46) 50.6	Medical/lifestyle Bariatric surgery Baseline (n = 96) Year 7 (n = 82) Change (95% CI) ^b Baseline (n = 166) Year 7 (n = 136) 8.2 (1.2) 8.0 (1.8) -0.2 (-0.5 to 0.2) 8.7 (1.7) 7.2 (1.4) 11.7 26.7 2.77 (1.38 to 5.54) 15.5 54.1 41.7 56.0 1.93 (1.07 to 3.46) 50.6 16.0	Medical/lifestyle Bariatric surgery Baseline (n = 96) Year 7 (n = 82) Change (95% CI) ^b Baseline (n = 166) Year 7 (n = 136) Change (95% CI) 8.2 (1.2) 8.0 (1.8) -0.2 (-0.5 to 0.2) 8.7 (1.7) 7.2 (1.4) -1.6 (-1.8 to -1.3) 11.7 26.7 2.77 (1.38 to 5.54) 15.5 54.1 6.42 (3.63 to 11.4) 41.7 56.0 1.93 (1.07 to 3.46) 50.6 16.0 0.18 (0.11 to 0.31)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

#Pushing the Boundaries (Modular Endoscopic Surgery)

Contents lists available at ScienceDirect

EBioMedicine

journal homepage: www.ebiomedicine.com

EBioMedicine Published by THE LANCET

J. Casella-Mariolo et al. / EBioMedicine 46 (2019) 452-462

NOTES GASTROINTESTINAL BYPASS

scientific reports

OPEN First fully endoscopic metabolic procedure with NOTES gastrojejunostomy, controlled bypass length and duodenal exclusion: a 9-month porcine study

Jean-Michel Gonzalez¹[∞], Sohaib Ouazzani¹, Laurent Monino¹, Laura Beyer-Berjot^{2,3}, Stephane Berdah^{2,3}, Nicolas Cauche⁴, Cecilia Delattre⁴, Joyce A. Peetermans⁵, Peter Dayton⁵, Ornela Gjata⁵, Darren Curran⁵ & Marc Barthet¹

Check for updates

Collaboration

DYNAMIC NON-TRAUMATIC ANCHORING

NeutralContraction / Dynamic Spring AdjustmentNeutral

EFFECTIVE BYPASS ON-DEMAND + STABILITY

*Stability demonstrated up to 12 weeks in pigs

Boston Scientific

Advancing science for life[™]

Sutureless Duodeno-Ileal Anastomosis with Self Assembling Magnets: Safety and Feasibility of a Novel Metabolic Procedure

METHODS

Open-label, prospective, single-arm study including obese patients (BMI 30-50 kg/m²) with Type II Diabetes.

The ileal magnet was deployed laparoscopically and the duodenal magnet was deployed endoscopically. Both magnets were coupled under laparoscopic and fluoroscopic guidance. Magnets were expelled at a median of 29.5 days after the procedure with no associated complications

RESULTS

Upper endoscopy at 12 months confirmed patent anastomoses with healthy-appearing mucosa in all patients

HbA1c reduced below 7.0% in 6 out of 8 (75%) patients and greater than 5% total body weight loss was observed in 7 out of 8 (87.5%) patients at 12 months

CONCLUSIONS

Suturcless duodeno-ileal side to side anastomosis using self-assembling magnets is feasible and safe in obese patients, and a dualpath enteral diversion with large-caliber and durable anastomosis can be achieved

Schlottmann F, Ryou M, Lautz D, Thompson CC, Buxhoeveden R. Sutureless Duodeno-Ileal Anastomosis with Self Assembling Magnets: Safety and Feasibility of a Novel Metabolic Procedure. Obesity Surgery 2021

WITH SLEEVE GASTRECTOMY

Surgical Endoscopy (2023) 37:6452–6463 https://doi.org/10.1007/s00464-023-10134-6

2023 SAGES ORAL

Side-to-side magnet anastomosis system duodeno-ileostomy with sleeve gastrectomy: early multi-center results

Michel Gagner^{1,8} · Guy-Bernard Cadiere² · Andres Sanchez-Pernaute³ · David Abuladze⁴ · Todd Krinke⁵ · J. N. Buchwald⁶ · Nathalie Van Sante⁷ · Marc Van Gossum² · Jana Dziakova³ · Levan Koiava⁴ · Maja Odovic³ · Mathilde Poras² · Lamees Almutlaq¹ · Antonio J. Torres³

Received: 1 April 2023 / Accepted: 8 May 2023 / Published online: 22 May 2023 © The Author(s) 2023

N86161

CONCLUSION

- Therapies targeting the GUT for correcting metabolic maladaptation in T2D represent a new frontier in Type 2 Diabetes management
- Potential for disease modification and decreasing the burden of disease
- Leveraging these interventions in an organ sparing fashion it the wave of the future

©2022 Mayo Foundation for Medical Education and Research | slide-22

THANK YOU

QUESTIONS