Metabolic and Bariatric Surgery for Asian Patients with BMI>50kg/m²

Evidence for BPD

Aung Myint Oo

Assistant Chief Clinical Informatics Officer Senior Consultant, Upper GI and Bariatric Surgery, Tan Tock Seng Hospital Chairman, Chapter of General Surgeons, College of Surgeons Singapore President, Obesity and Metabolic Surgery Society of Singapore (OMSSS) Member, IFSO Communication Committee Co-Chair, ELSA Information and Communication Committee Vice President, 10th Asia-Pacific Gastroesophageal Cancer Congress (APGCC) Member, EAES Education and Training Committee

XXVII IFSO World Congress

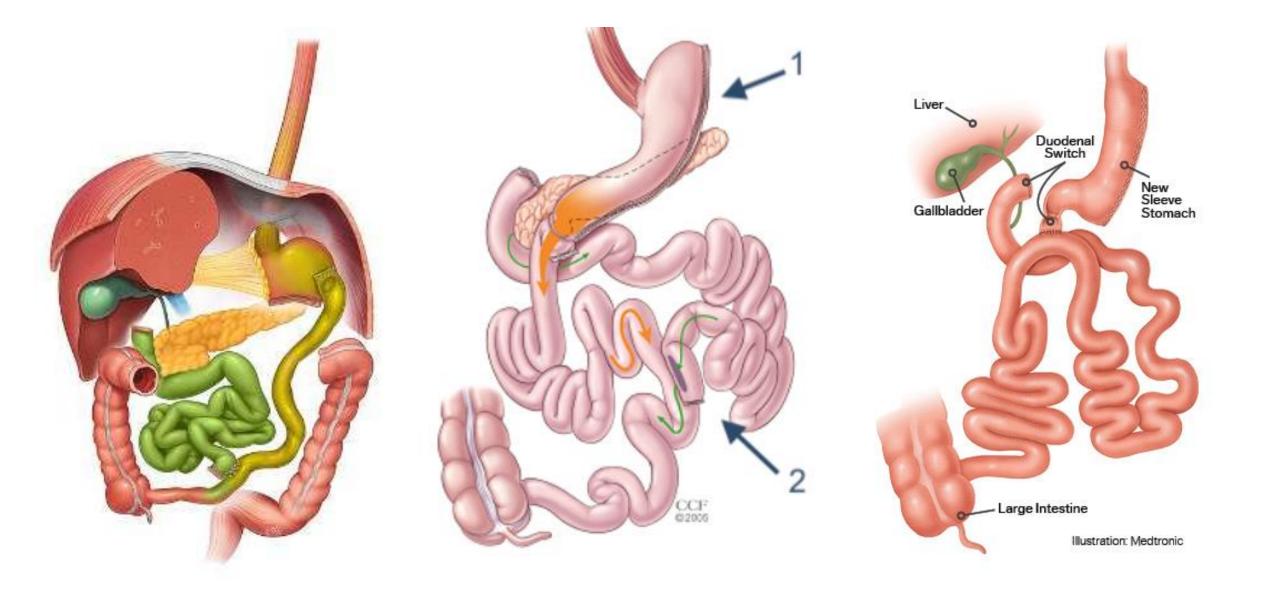
I have no potential conflict of interest to report

XXVII IFSO World Congress

Nicola Scopinaro, MD, FACS (Hon) 1945–2020

Founding President of IFSO

Angrisani, L. In Memory of Nicola Scopinaro: a Great Friend and Mentor. OBES SURG 30, 4693–4694 (2020).


XXVII IFSO World Congress

XXVII IFSO World Congress

XXVII IFSO World Congress

The first survey addressing patients with BMI over 50: a survey of 789 bariatric surgeons

Mohammad Kermansaravi^{1,2} · Panagiotis Lainas^{3,4} · Shahab Shahabi Shahmiri⁵ · Wah Yang⁶ · Amirhossein Davarpanah Jazi⁷ · Ramon Vilallonga^{8,9} · Luciano Antozzi¹⁰ · Chetan Parmar^{11,12} · Radwan Kassir¹³ · Sonja Chiappetta¹⁴ · Lorea Zubiaga¹⁵ · Antonio Vitiello¹⁶ · Kamal Mahawar¹⁷ · Miguel Carbajo¹⁸ · Mario Musella¹⁶ · Scott Shikora¹⁹

Received: 23 July 2021 / Accepted: 31 December 2021 / Published online: 21 January 2022 $\ensuremath{\mathbb{C}}$ The Author(s) 2022

XXVII IFSO World Congress

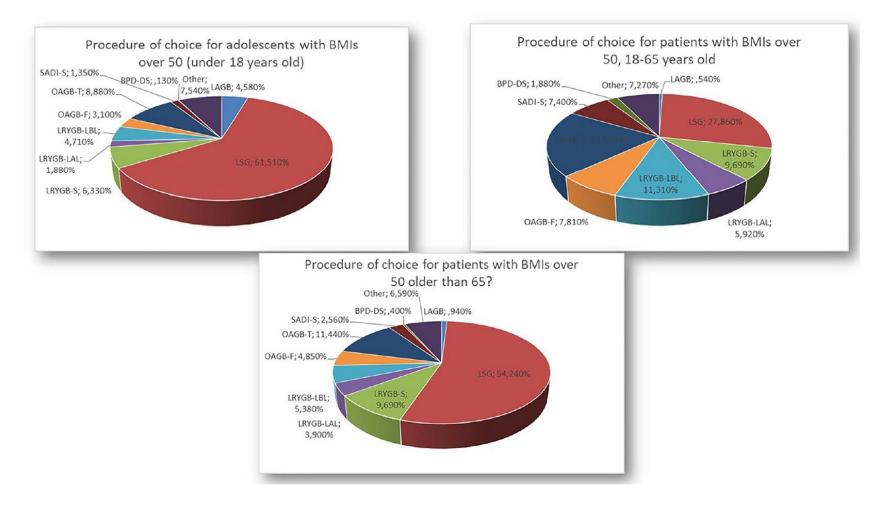


Fig. 1 Procedure of choice for three age categories of patients with BMIs over 50 kg/m2 as reported by the participants of the survey. A Under 18 years old, **B** 18 to 65 years old, **and C** older than 65 years old. *LAGB* laparoscopic adjustable gastric banding, *LSG* laparoscopic sleeve gastrectomy, *LRYGB-S* standard Roux-en-Y gastric bypass, *LRYGB-LAL* Roux-en-Y long alimentary limb > 100 cm gas-

tric bypass, *LRYGB-LBL* Roux-en-Y long biliary limb > 150 cm gastric bypass, *OAGB-F* one anastomosis gastric bypass with fixed limb measures, *OAGB-T* one anastomosis Gastric Bypass with tailored limb measures, *SADI-S* single anastomosis duodeno–ileal bypass with sleeve gastrectomy, *BPD-DS* biliopancreatic diversion with duodenal switch

XXVII IFSO World Congress

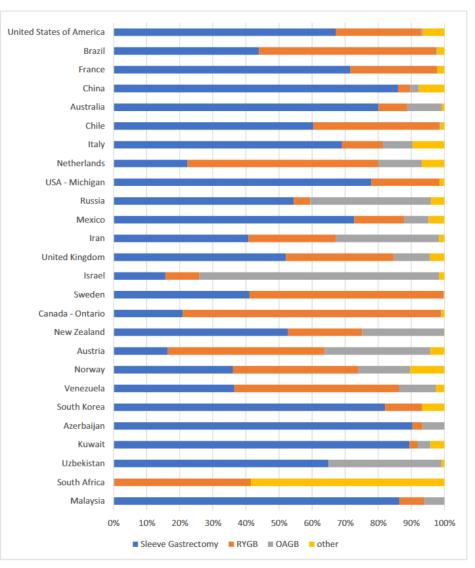
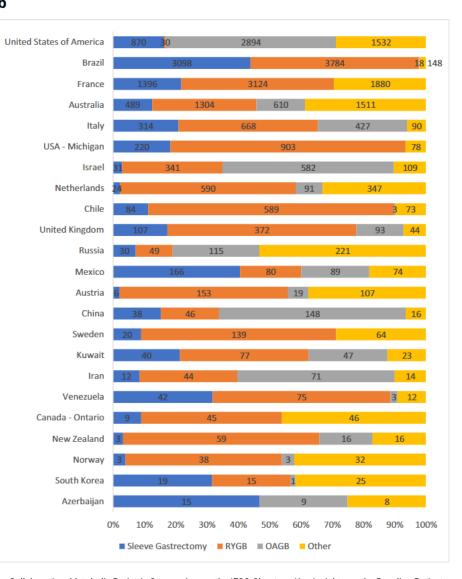



Fig. 5 a Primary MBS types by country or region (n = 449,815). b Revisional MBS types by country or region (n = 52,335). Malaysia (n = 1), Uzbekistan (n = 5), and South Africa (n = 3) cannot be graphically displayed. The United States of America reported an additional 21,057 revisional cases labelled "revision/conversion" that are not able to be displayed graphically. This means the break-down of procedures displayed in this graph may not be representative b

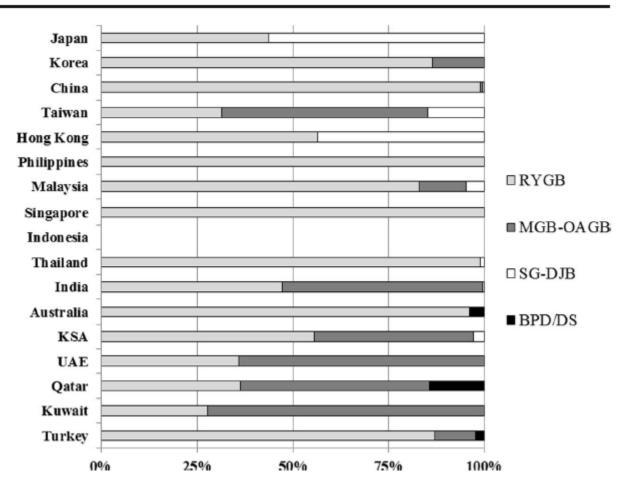
Brown WA, Liem R, Al-Sabah S, Anvari M, Boza C, Cohen RV, Ghaferi A, Våge V, Himpens J, Kow L, Morton J, Musella M, Pattou F, Sakran N, Clapp B, Prager G, Shikora S; IFSO Global Registry Collaboration. Metabolic Bariatric Surgery Across the IFSO Chapters: Key Insights on the Baseline Patient Demographics, Procedure Types, and Mortality from the Eighth IFSO Global Registry Report. Obes Surg. 2024 May;34(5):1764-1777.

XXVII IFSO World Congress

Obesity Surgery (2019) 29:534–541 https://doi.org/10.1007/s11695-018-3539-7

DRIGINAL CONTRIBUTIONS

Bariatric/Metabolic Surgery in the Asia-Pacific Region: APMBSS 2018 Survey


Masayuki Ohta¹ · Yosuke Seki² · Simon Ki-Hung Wong³ · Cunchuan Wang⁴ · Chih-Kun Huang⁵ · Ahmad Aly⁶ · Manish Baijal⁷ · Salman Al-Sabah⁸ · Suthep Udomsawaengsup⁹ · Yoon Seok Heo¹⁰ · Saad Sqer Althuwaini¹¹ · Alper Celik¹² · Nafad El-Hadidi¹³ · Davit Sargsyan¹⁴ · Tikfu Gee¹⁵ · Jaideepraj Rao¹⁶ · Errawan R. Wiradisuria¹⁷ · Edward Oliveros¹⁸ · Seigo Kitano¹⁹ · Kazunori Kasama²

Published online: 10 October 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018

XXVII IFSO World Congress

Fig. 1 Percentages of bypass procedures in the category of bypass surgery in the 17 Asia-Pacific countries. KSA, Kingdom of Saudi Arabia; UAE, United Arab Emirates; RYGB, Roux-en-Y gastric bypass; MGB-OAGB, mini gastric bypass; MGB-OAGB, mini gastric bypass; SG-DJB, sleeve gastrectomy with duodenojejunal bypass; BPD/DS, biliopancreatic diversion/ duodenal switch

XXVII IFSO World Congress

OBES	SURG	(2019)	29:534	1–541
------	------	--------	--------	-------

Fable 3 Number and frequency of bariatric/metabolic surgery in	Country	Bariatric/metaboli	c surgery in 201	17	Percentage	es of procedure categ	gories
2017 and percentages of procedure categories		Total	F/TP	F/OP	SG	Bypass surgery	Others
	East Asia	12,808 (13.5%)					
	Japan	471	0.0004%	0.0103%	89.8%	6.4%	3.8%
	Korea	438 (2016)*	0.0009%	0.0225%	43.6%	13.5%	42.9%
	China	8850	0.0006%	0.0131%	61.3%	20.8%	17.9%
	Taiwan	2834	0.0120%	0.1803%	65.1%	12.2%	22.7%
	Hong Kong	215	0.0029%	0.0930%	77.5%	11.2%	11.2%
	Southeast Asia	1741 (1.8%)					
	Philippines	55	0.00005%	0.0014%	63.6%	16.4%	20.0%
	Malaysia	625	0.0020%	0.0188%	67.5%	23.5%	9.0%
	Singapore	428	0.0075%	0.1548%	68.2%	25.7%	6.1%
	Indonesia	62	0.00002%	0.0005%	98.4%	0%	1.6%
	Thailand	571	0.0008%	0.0108%	56.4%	40.5%	3.1%
	South Asia						
	India	14,543 (15.3%)	0.0011%	0.0436%	55.0%	41.2%	3.8%
	Oceania						
	Australia	24,237 (25.5%)	0.0991%	0.4492%	65.9%	10.4%	23.7%
	West Asia	41,796 (43.9%)					
	KSA	17,000	0.0516%	0.2147%	72.4%	21.2%	6.4%
	UAE	6342 (2016)*	0.0675%	0.2586%	70.0%	20.6%	9.4%
	Qatar	1454	0.0551%	0.1649%	79.9%	16.6%	3.5%
	Kuwait	5000	0.1209%	0.4241%	82.4%#	12.2%#	5.3%#
	Turkey	12,000	0.0149%	0.0814%	82.5%	9.3%	8.3%
	Total	95,125	0.0027%	0.0571%	68.0%	19.5%	12.5%

F/TP, frequency in total population; F/OP, frequency in obese population; SG, sleeve gastrectomy

*In Korea and UAE, the data of 2017 were not available, and the data of 2016 were used

[#]In Kuwait, percentages of procedure categories were calculated using 654 patients who received operation in the government hospitals

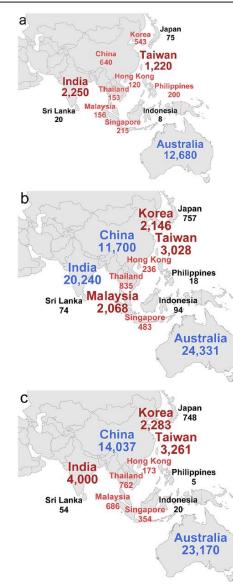
XXVII IFSO World Congress

Obesity Surgery (2022) 32:2994-3004 https://doi.org/10.1007/s11695-022-06182-x

ORIGINAL CONTRIBUTIONS

Ten Years of Change in Bariatric/Metabolic Surgery in the Asia–Pacific Region with COVID-19 Pandemic: IFSO-APC National Reports 2021

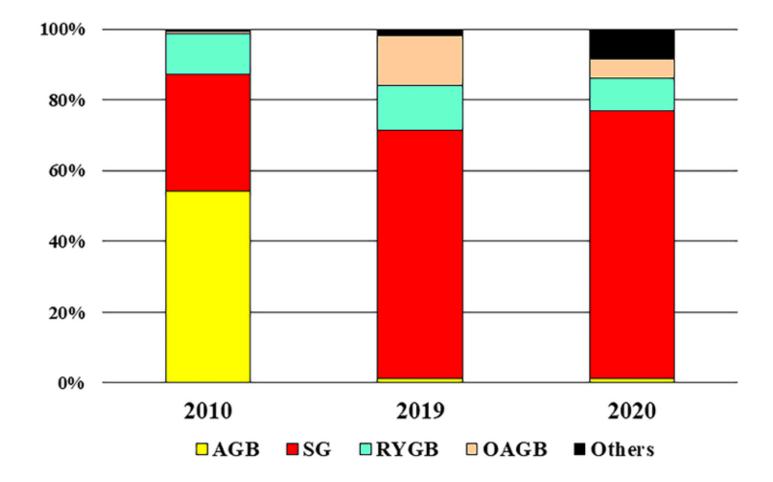
Masayuki Ohta^{1,2} · Soo Min Ahn³ · Yosuke Seki⁴ · Wah Yang⁵ · Simon Kin-Hung Wong⁶ · Suthep Udomsawaengsup⁷ · Jeffrey M. Hamdorf⁸ · Manish Khaitan⁹ · Nik Ritza Kosai¹⁰ · Weu Wang^{11,12} · June Lee¹³ · Reno Rudiman¹⁴ · Thejana Wijeratne¹⁵ · Edward Oliveros¹⁶ · Cunchuan Wang⁵ · Kazunori Kasama⁴


Received: 23 March 2022 / Revised: 20 June 2022 / Accepted: 22 June 2022 / Published online: 30 June 2022 © The Author(s) 2022

XXVII IFSO World Congress

Obesity Surgery (2022) 32:2994-3004

Fig. 3 Changes in the numbers of bariatric/metabolic surgery in 2010 (a), 2019 (b), and 2020 (c)



XXVII IFSO World Congress

2999

Fig. 4 Percentages of each bariatric/metabolic procedure in 2010, 2019, and 2020. The 2010 data did not include the data of Indonesia and Sri Lanka, and the 2020 data did not include the data of India. AGB, adjustable gastric banding; SG, sleeve gastrectomy; RYGB, Roux-en-Y gastric bypass; OAGB, one anastomosis gastric bypass

XXVII IFSO World Congress

Updates in Surgery (2020) 72:743–749 https://doi.org/10.1007/s13304-020-00774-x

ORIGINAL ARTICLE

Trends and progress of bariatric and metabolic surgery in India

Aparna Govil Bhasker^{1,2} · Arun Prasad³ · P. Praveen Raj⁴ · Randeep Wadhawan⁵ · Manish Khaitan⁶ · Abhay Jugal Agrawal^{7,8,9,10,11} · Om Tantia¹² · Sarfaraz J. Baig¹³ · Raj Palaniappan¹⁴ · H. V. Shivaram¹⁵ · Sumeet Shah¹⁶ · Vandana Soni¹⁷ · Mohit Bhandari¹⁸ · Rakesh Shivhare¹⁹ · Shrihari Dhorepatil²⁰ · Pradeep Chowbey²¹ · Mahendra Narwaria²² · Shashank Shah^{23,24} · Rajesh Khullar²⁵ · on behalf of the Obesity and Metabolic Surgery Society of India (OSSI)

Received: 17 February 2020 / Accepted: 16 April 2020 / Published online: 24 April 2020 © Italian Society of Surgery (SIC) 2020

XXVII IFSO World Congress

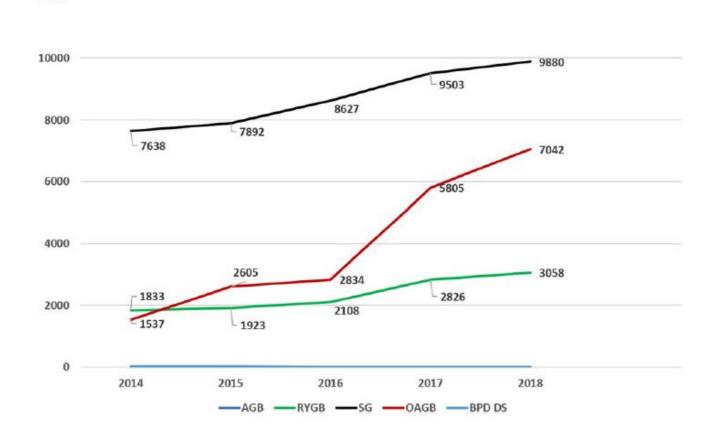


Fig. 2 Number of individual procedures in the last 5 years

XXVII IFSO World Congress

12000

Contents lists available at ScienceDirect

Obesity Research & Clinical Practice

journal homepage: www.elsevier.com/locate/orcp

Original article

Bariatric surgery trends and progress in Taiwan: 2010-2021

Kuo-Feng Hsu^{a,*,1}, Hsin-Mei Pan^{a,1}, Po-Chih Chang^{b,1}, Chih-Kun Huang^c, Weu Wang^d, Wei-Jei Lee^e, Tien-Chou Soong^f, Ming-Hsien Lee^g, Po-Jen Yang^h, Ming-Che Hsin^c, Chien-Hua Lin^{a,i}, Guo-Shiou Liao^a

^a Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan

^b Division of Thoracic Surgery, Department of Surgery & Weight Management Center, Kaohsiung Medical University Hospital/Kaohsiung Medical University, Kaohsiung, Taiwan

^c Body Science & Metabolic Disorders International Medical Center, China Medical University Hospital, Taichung, Taiwan

^d Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University Hospital/Taipei Medical University, Taipei, Taiwan

^e Medical Weight loss Center, China Medical University Hsinchu Hospital, Taiwan

^f Center for Weight Loss and Health Management, E-DA Dachang Hospital/College of Medicine, I-Shou University, Kaohsiung, Taiwan

^g Metabolic & Bariatric Surgical Department, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation/ Department of surgery, School of Medicine, Tzu Chi University, Hualien, Taiwan

^h Department of Surgery, College of Medicine, National Taiwan University/National Taiwan University Hospital, Taipei, Taiwan

ⁱ IRCAD Taiwan, Department of Surgery, Chang-Bing Show Chwan Memorial Hospital, Taiwan

XXVII IFSO World Congress

		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	Total
AGB		163	75	45	37	31	19	22	8	2	0	0	0	402 (1.45 %)
OAGB		41	54	120	110	194	217	219	186	213	216	317	548	2435 (8.80 %)
RYGB		612	476	350	170	186	105	91	109	119	119	133	115	2585 (9.34 %)
DS		0	0	0	0	0	0	0	0	0	0	0	0	0
BPD		0	1	0	0	0	1	0	0	0	0	0	0	2
SG		351	522	881	1320	1762	1740	1500	1844	1980	2049	1818	1688	17,455 (63.05%)
SG plus	SG-DJB	N/A	14	63	76	101	50	50	62	69	26	8	10	1226 (4.43 %)
	SG-PJB	N/A	N/A	N/A	N/A	N/A	80	60	83	97	100	100	158	
	SASI	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19	
GC	GC only	N/A	N/A	14	12	2	2	0	4	0	5	1	1	3092 (11.17 %)
	GC-PJB	N/A	N/A	37	422	462	515	434	384	259	215	168	155	
Total Case	Number of Pri	mary Baria	tric Surgery	v in Taiwan	(2010-202	(1)						27,684	(100%)	

Table 2Types of primary bariatric surgery procedures in Taiwan (2010–2021).

AGB = Adjustable Gastric Band; OAGB = One Anastomosis Gastric Bypass; RYGB = Roux-en-Y Gastric Bypass; DS = Duodenal Switch; BPD = Biliopancreatic Diversion; SG = Sleeve Gastrectomy; SG-DJB = Sleeve Gastrectomy with Duodeno-Jejunal Bypass; SG-PJB = Sleeve Gastrectomy with Proximal Jejunal Bypass; GC = Gastric Clipping; GC-PJB = Gastric Clipping with Proximal Jejunal bypass.

XXVII IFSO World Congress

TYPE Original Research PUBLISHED 06 January 2023 DOI 10.3389/fsurg.2022.934434

OPEN ACCESS

EDITED BY Gabriel Sandblom, Karolinska Institutet (KI), Sweden

REVIEWED BY

Francesco Saverio Papadia, University of Genoa, Italy Marta Guimaraes, University of Porto, Portugal

*CORRESPONDENCE Tao Jiang jiangtao99@jlu.edu.cn First study on the outcomes of biliopancreatic diversion with duodenal switch in Chinese patients with obesity

Lun Wang, Zheng Zhang, Zeyu Wang and Tao Jiang*

Department of Bariatric and Metabolic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China

XXVII IFSO World Congress

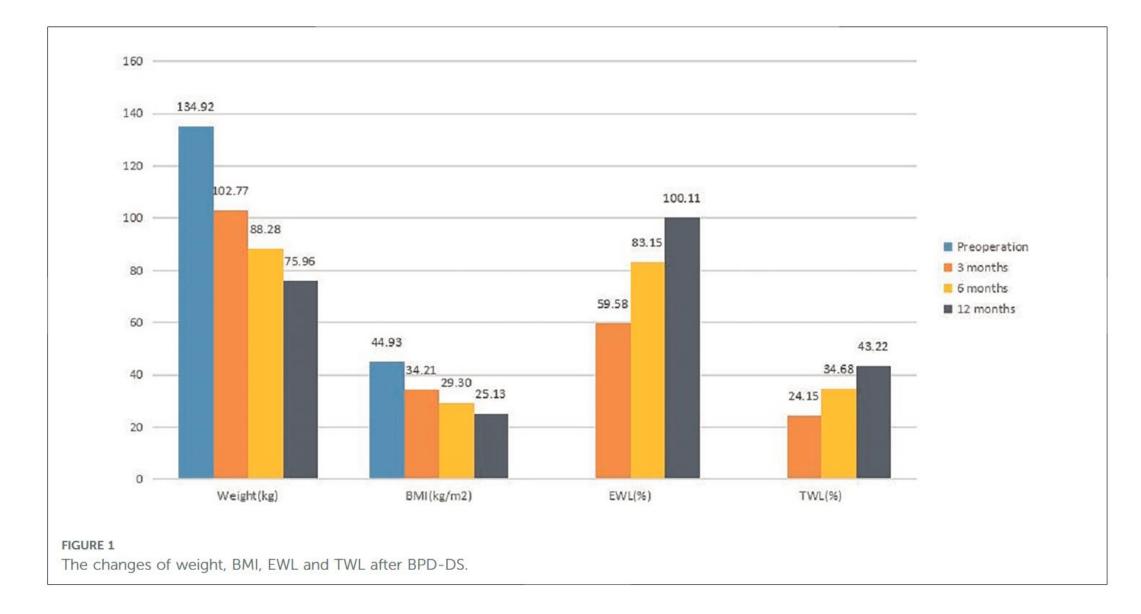


TABLE 1 Patient demographics.

Factor	All patients $(n = 12)$
Gender (male/female)	8/4
Mean age (years)	34.00 ± 9.92
Preoperative body weight (kg)	134.92 ± 22.90
Preoperative BMI (kg/m ²)	44.93 ± 9.33
Previous upper abdominal surgery	0
Obesity-related comorbidity	
Type 2 diabetes	7 (58.3%)
Hypertension	12 (100%)
Hyperuricemia	8 (66.7%)

XXVII IFSO World Congress

XXVII IFSO World Congress

	Normal range	Nutrier	nts level	Deficien	ncy (n)	P1	P2
		Baseline	1 year	Baseline	1 year		
Total protein (g/L)	62-83	72.40 ± 6.00	67.70 ± 6.54	1	2	0.058	1.000
Prealbumin (mg/L)	180-390	254.97 ± 38.54	213.15 ± 63.87	0	3	0.049	0.217
Albumin (g/L)	35–52	42.19 ± 2.55	39.67 ± 4.37	0	2	0.133	0.478
Hemoglobin (g/L)	110-150	151.35 ± 17.50	133.09 ± 14.70	0	1	0.008	1.000
Hematocrit (L/L)	0.37-0.48	44.47 ± 3.74	39.86 ± 4.04	0	2	0.009	0.478
Vitamin A (µg/ml)	0.38-0.98	0.46 ± 0.14	0.28 ± 0.12	3	7	0.001	0.107
Vitamin B12 (pg/ml)	180–916	400.86 ± 204.93	509.71 ± 303.58	0	2	0.345	0.478
Vitamin D (ng/ml)	3–29	12.43 ± 5.15	9.95 ± 5.76	0	0	0.256	_
Vitamin E (µg/ml)	5.7–19.9	12.23 ± 4.34	7.16 ± 2.57	0	6	0.008	0.014
Folic acid (ng/ml)	≥3.2	17.43 ± 8.33	8.77 ± 4.49	0	1	0.003	1.000
Sodium (mmol/L)	136–145	137.58 ± 3.06	140.34 ± 2.89	3	1	0.021	0.590
Kalium (mmol/L)	3.5-5.2	4.04 ± 0.38	3.98 ± 0.48	1	1	0.677	1.000
Calcium (mmol/L)	2.1-2.65	2.31 ± 0.15	2.34 ± 0.12	0	1	0.493	1.000
Chloride (mmol/L)	96-108	100.75 ± 3.92	105.79 ± 4.39	1	1	0.001	1.000
Phosphorus (µmol/L)	0.81-1.45	1.10 ± 0.23	1.21 ± 0.18	2	0	0.239	0.478
Magnesium (mmol/L)	0.8-1.00	0.82 ± 0.05	0.87 ± 0.10	2	3	0.124	1.000
Iron (µmol/L)	8.9-32.3	16.74 ± 4.09	13.12 ± 3.85	0	2	0.021	0.478
Zinc (µmol/L)	11.1–19.5	13.57 ± 1.53	11.17 ± 1.90	0	6	0.009	0.014

TABLE 2 Changes of nutrients' serum levels at 1 year after BPD-DS (n = 12).

P1 means the comparison of nutrients level at baseline and 1 year after BPD-DS; P2 means the comparison for the rate of nutrients deficiency at baseline and 1 year after BPD-DS.

Bold italic values indicate P < 0.05.

XXVII IFSO World Congress

scientific reports

OPEN Analysis of the 1-year efficacy of four different surgical methods for treating Chinese super obese (BMI ≥ 50 kg/m²) patients

Zheng Zhang, Lun Wang, Zhiqiang Wei, Zhenhua Zhang, Liang Cui & Tao Jiang 🏻

XXVII IFSO World Congress

Melbourne 2024

Check for updates

Factor	RYGB(n=10)	SG(n=22)	BPD/DS(n=14)	SADI-S(n=14)	F/χ^2	Р
Gender (male/female), n	5/5	14/8	9/5	6/8	2.034	0.565
Mean age (years)	34.20±10.16	31.55 ± 8.66	33.07 ± 7.07	27.07±5.88	1.967	0.129
Preoperative body weight (kg)	161.75±18.8	162.16 ± 16.78	161.3 ± 16.41	159.61±17.21	0.066	0.978
Preoperative BMI (kg/m ²)	55.20 ± 3.42	52.87±2.63	54.76 ± 3.61	53.34±3.36	1.792	0.159
HbA1c (%)	7.16±1.86	6.66±1.88	6.94 ± 1.08	6.24 ± 1.30	0.681	0.568
Systolic blood pressure (mmHg)	160.00 ± 29.20	153.77 ± 18.24	154.86±36.55	149.50 ± 13.94	0.354	0.787
Diastolic blood pressure (mmHg)	90.30±22.29	90.45 ± 13.02	90.79 ± 17.03	89.64±15.53	0.012	0.998
Uric acid (µmol/L)	457.70±109.17	460.24±99.19	506.60 ± 157.42	531.51±106.98	1.171	0.331
Triglyceride (mmol/L)	2.47 ± 1.57	2.23 ± 1.62	2.03 ± 0.58	1.69 ± 0.61	0.804	0.497
Total cholesterol (mmol/L)	4.73 ± 1.22	4.91 ± 0.90	5.65 ± 0.96	5.51 ± 1.56	2.096	0.112
With type 2 diabetes, n	5 (10)	5 (17)	7 (13)	4 (13)	2.716	0.437
With hypertension, n	6 (10)	17 (22)	9 (14)	11 (14)	1.822*	0.680
With hyperuricemia, n	7 (10)	15 (21)	8 (12)	11 (12)	2.610*	0.497
With hyperlipidemia, n	6 (10)	12 (22)	10 (14)	4 (12)	3.908	0.272
With hypercholesterolemia, n	2 (10)	3 (22)	6 (14)	3 (12)	3.923*	0.275

Table 1. Patient characteristics before surgery. *Fisher's precision probability test used wherever appropriate.

XXVII IFSO World Congress

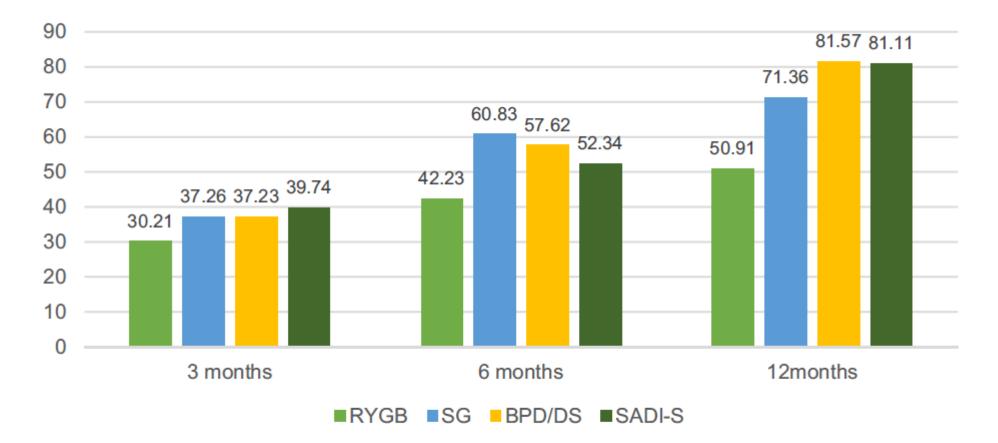


Figure 1. Changes in %EWL at 3, 6, and 12 months in different surgical groups.

XXVII IFSO World Congress

Factor	RYGB (n = 10)	SG (n=22)	BPD/DS $(n=14)$	SADI-S (n = 14)	F	Р
Operation time (min)	202.22 ± 47.97	133.44 ± 35.15	283.07 ± 45.06	206.08 ± 25.60	37.590	0.000
Length of hospital stay (day)	10.67 ± 5.87	10.81 ± 4.31	8.00±3.49	8.38±2.99	1.702	0.179
Complications, n	2	0	1	0	-	-
Complication rate (%)	20	0	7.14	0	-	-

Table 2. Perioperative parameters of RYGB, SG, BPD/DS, and SADI-S.

XXVII IFSO World Congress

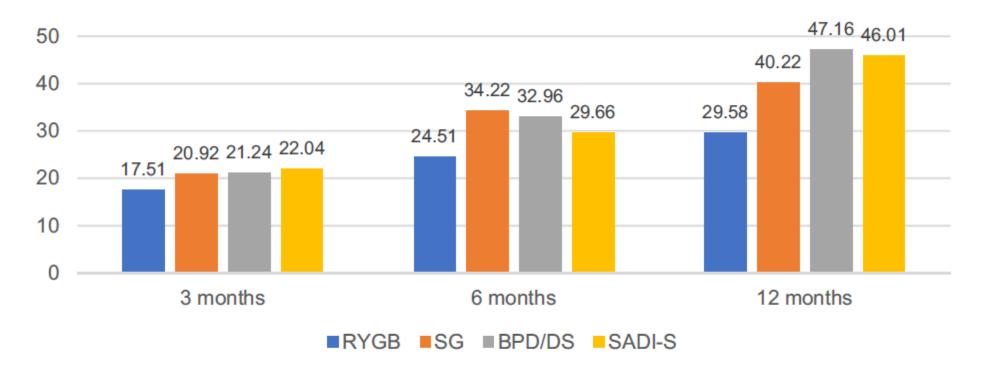


Figure 2. Changes in %TWL at 3, 6, and 12 months in different surgical groups.

XXVII IFSO World Congress

	RYGB			SG			BPD/DS			SADI-S		
Factor	12 months	t	Р	12 months	t	Р	12 months	t	Р	12 months	t	Р
HbA1c (%)	5.53 ± 0.41	1.699	0.115	5.14±0.29	1.766	0.093	4.64 ± 0.26	7.484	0.000	4.833 ± 0.40	1.944	0.072
SBP (mmHg)	129.00 ± 19.44	1.934	0.077	127.29 ± 12.58	2.195	0.035	120.00 ± 17.88	2.649	0.015	109.85 ± 14.78	6.025	0.000
DBP (mmHg)	75.25±8.22	1.289	0.222	81.29±10.79	4.751	0.000	73.33±11.93	2.672	0.014	64.43±9.55	3.911	0.001
Uric acid (µmol/L)	389.40±61.79	1.545	0.147	379.80±93.26	2.628	0.013	352.81±72.23	2.591	0.020	373.68±76.06	3.760	0.001
Triglyceride (mmol/L)	1.28 ± 0.41	1.469	0.168	1.03 ± 0.38	3310	0.003	1.19 ± 0.36	3.882	0.001	1.04 ± 0.75	2.166	0.043
Total cholesterol (mmol/L)	4.17 ± 0.58	0.858	0.408	4.92 ± 0.84	- 0.053	0.958	3.50 ± 0.23	8.050	0.000	3.66±0.79	3.543	0.02

Table 4. Comparison of remission of metabolic diseases related to SG, RYGB, BPD, and SADI at 12 months after and before the operation.

XXVII IFSO World Congress

			H 11. (./I)		Vitamin B12		T (1/T)	
	Total protein (g/L)	Albumin (g/L)	Hemoglobin (g/L)	Folate (ng/mL)	(pmol/L)	Calcium (mmol/L)	Iron (µmol/L)	Zinc (µmol/L)
Normal range	62-83	35-52	110-150	> 3.2	180-916	2.10-2.55	8.9-32.3	11.1-19.5
RYGB								
Baseline	74.00 ± 5.87	42.50 ± 3.03	143.50 ± 25.16	20.14 ± 12.66	280.11±73.34	2.28 ± 0.10	14.56 ± 7.74	13.59 ± 3.89
12 months	72.20 ± 1.30	42.14±1.28	140.20 ± 15.94	30.20±13.30	219.22±81.59	2.30 ± 0.06	20.20 ± 8.63	13.44 ± 2.94
t	0.925	0.251	0.265	-1.070	1.433	- 3.65	- 0.858	0.060
Р	0.375	0.806	0.795	0.326	0.177	0.722	0.517	0.953
SG	-	•	1		•		1	•
Baseline	71.14±3.43	42.21 ± 2.38	152.70 ± 17.03	15.78 ± 8.68	370.18±119.37	2.26 ± 0.08	13.86 ± 5.56	14.11 ± 2.20
12 months	70.24 ± 4.79	41.01 ± 2.37	141.00 ± 17.13	15.30±8.92	251.20±107.15	2.31±0.11	22.27 ± 6.14	13.42 ± 1.38
t	0.648	1.442	1.967	0.157	2.980	- 1.638	- 3.810	0.913
Р	0.522	0.159	0.058	0.876	0.005	0.111	0.001	0.369
BPD/DS	-	L			•			
Baseline	72.17±5.13	41.70 ± 3.43	150.00±11.39	9.16 ± 4.06	311.37 ± 105.80	2.33 ± 0.15	17.01 ± 4.67	14.72 ± 1.86
12 months	67.32 ± 8.80	37.74 ± 8.87	130.70±23.73	8.76±4.94	414.56±432.66	2.29 ± 0.20	11.92 ± 4.82	10.63 ± 3.01
t	1.554	1.336	2.370	0.214	- 0.737	0.454	2.556	4.017
Р	0.143	0.208	0.035	0.833	0.478	0.655	0.018	0.001
SADI-S		•			•			
Baseline	73.79±6.31	40.08 ± 4.05	143.69 ± 17.90	13.87 ± 8.01	349.89±146.16	2.38 ± 0.14	18.31 ± 10.37	15.10±3.21
12 months	68.37±7.49	38.92 ± 5.66	135.78 ± 16.36	7.39 ± 6.73	577.48 ± 385.64	2.35 ± 0.11	13.39 ± 4.59	11.24±1.43
t	1.711	0.520	1.016	1.897	- 1.737	0.502	1.308	3.321
Р	0.105	0.610	0.323	0.075	0.100	0.622	0.208	0.004

Table 5. Comparison of the nutritional indicators of SG, RYGB, SADI, and BPD-DS at 1 year after and before the operation.

XXVII IFSO World Congress

Conclusion

- Limited evidence on BPD for Asian Patients with BMI>50kg/m2
- BPD improved Weight Loss and Metabolic conditions
- Nutrtional deficiencies are more common in BPD in Asian patients

XXVII IFSO World Congress

Thank You.

XXVII IFSO World Congress

