

"Limb lengths in OAGB and SADI-S"

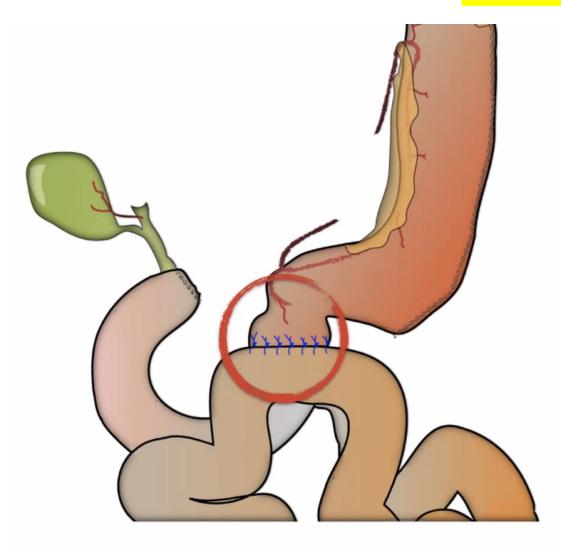
- Antonio J. Torres MD, PhD, FACS, FASMBS
- Professor of Surgery
- Hospital Clínico San Carlos. Universidad Complutense de Madrid
- President IFSO 2011-2012
- Chairman IFSO's Board of Trustees 2015-2019

Disclosures

Lectures & Consultant for

Johnson & Johnson

Medtronic

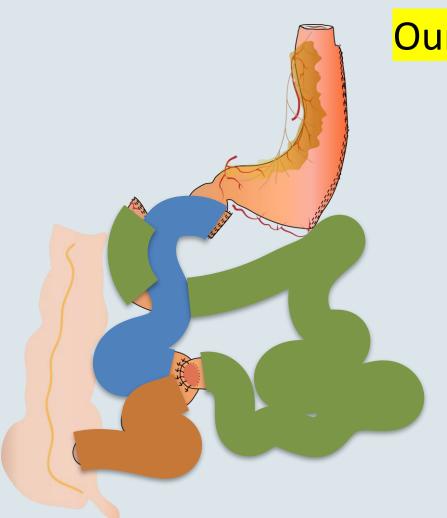

GT Metabolic

Meril

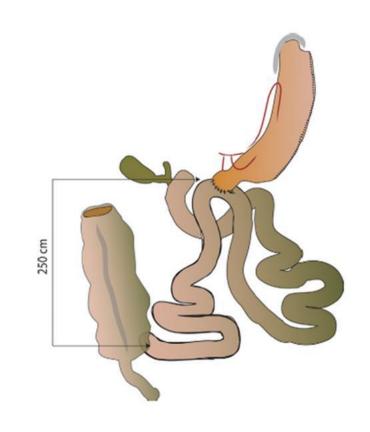
Gore Medical

What is the **ideal** limb lengths in OAGB and SADIS??

Limb Length



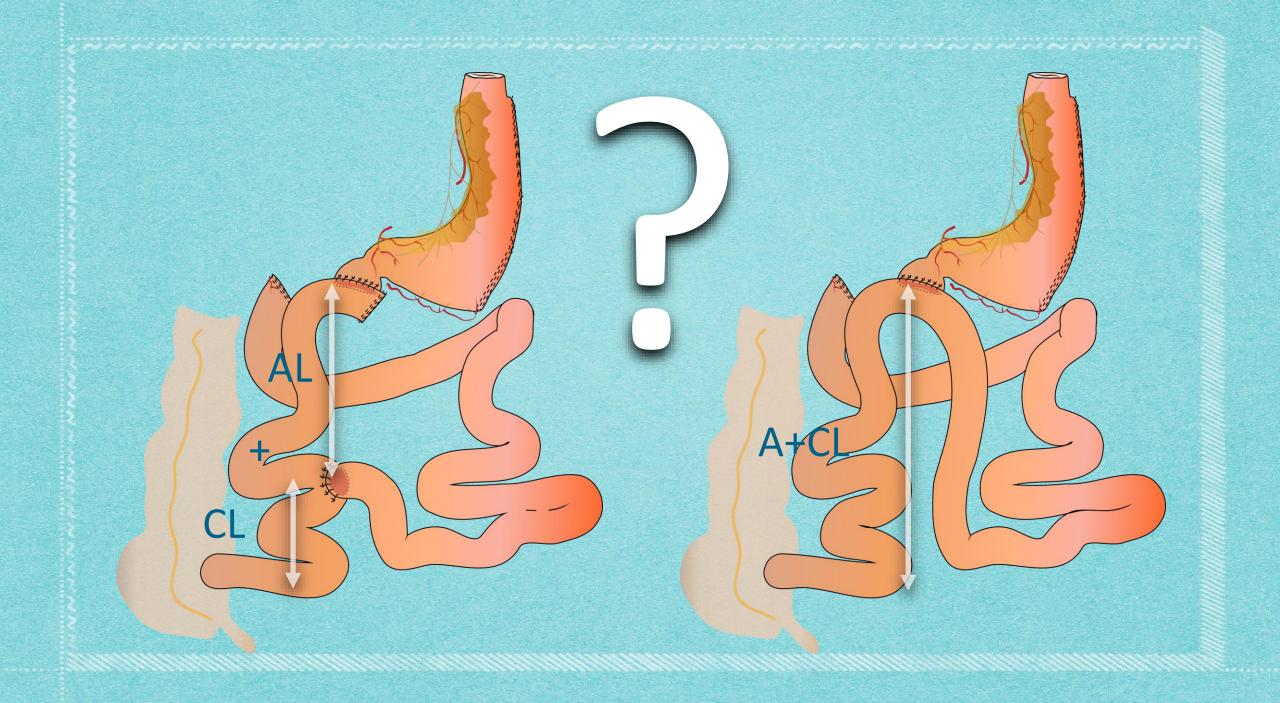
What should be the length of the common channel?

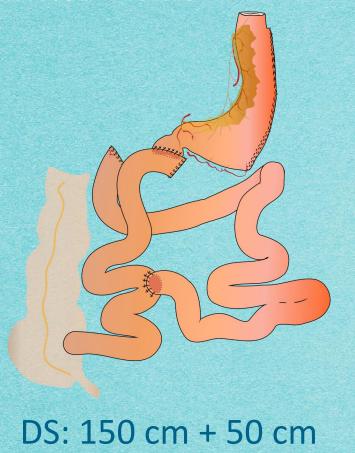

Our Duodenal Switch (2000 - 2007)

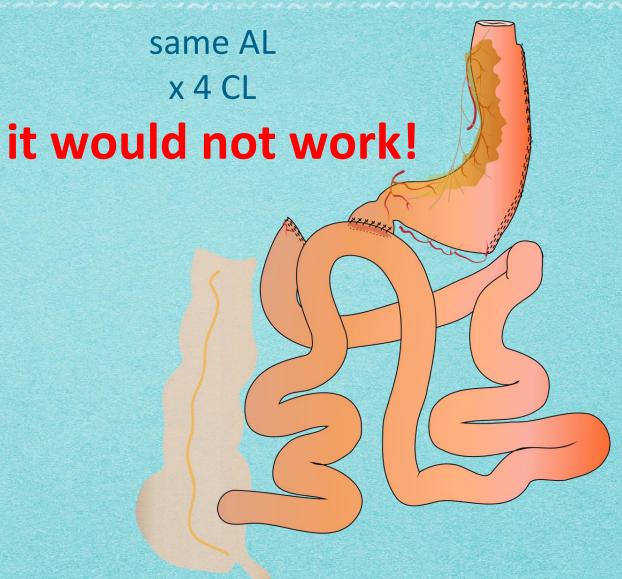
- Biliary Very long
- Alimentary 200 cm
- Common 50 100 cm

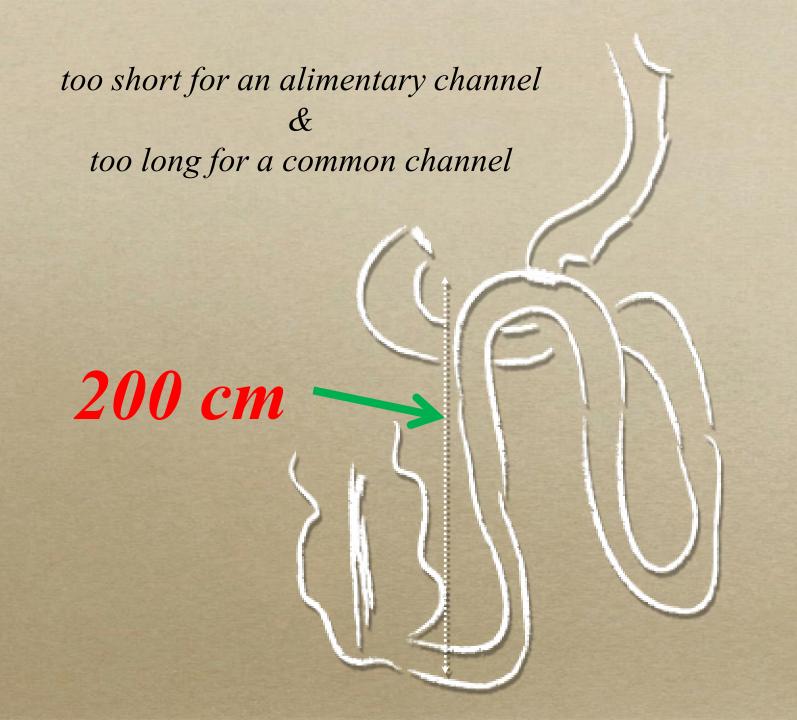
SADIS: Long BP limb

- → ↑ biliary acids absorption
- → ↑ stimulation FXR e TGR
- → ↑ stimulation L-cells and enterocites
- \rightarrow \uparrow incretins (\uparrow GLP1, \uparrow PYY, \uparrow OXM, \uparrow FGF-19)


SADI-S


the ileocolic junction is identified an 1 250 cm measured proximally (formerly 200 cm), of the infusion of hyoscine butylbromide (Buscopan®)


sleeve gastric resection over a 54F bougie


eliminates the Roux- en-Y reconstruction and include Billroth II-type one-loop duodenoileostomy instead

MODERN SURGERY: TECHNICAL INNOVATION

Proximal Duodenal—Ileal End-to-Side Bypass with Sleeve Gastrectomy: Proposed Technique

Andrés Sánchez-Pernaute · Miguel Angel Rubio Herrera · Elia Pérez-Aguirre · Juan Carlos García Pérez · Lucio Cabrerizo · Luis Díez Valladares · Cristina Fernández · Pablo Talayera · Antonio Torres

OBES SURG (2007) 17:1614-1618

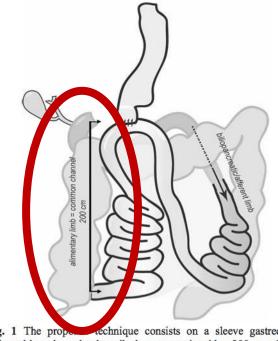
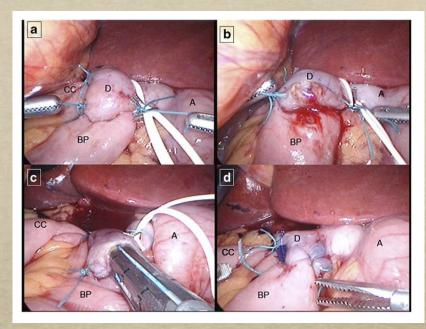
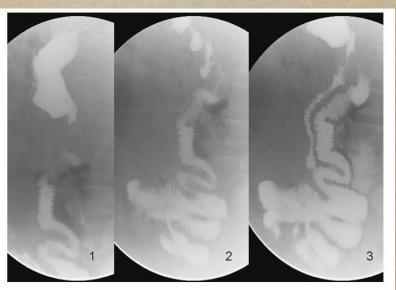
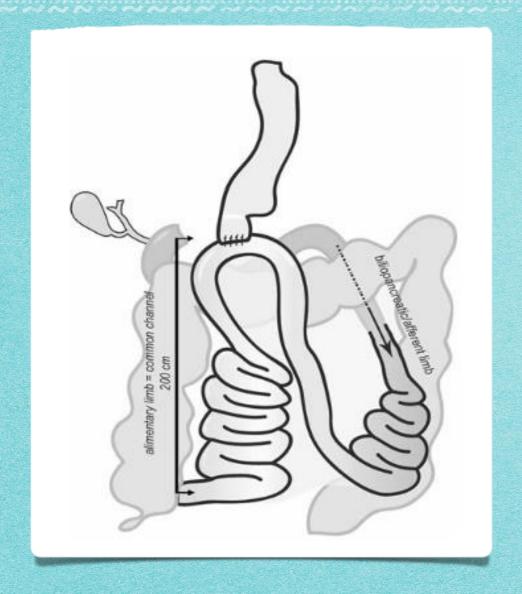





Fig. 1 The proper technique consists on a sleeve gastrectomy followed by a loop duodeno-ileal anastomosis with a 200-cm efferent limb

2007

2007 - SADI-S 200

Adequate Weight Loss

8% Malnutrition - Revisional Rate

2009 - SADI-S 250

SADI-S:

SINGLE ANASTOMOSIS DUODENO-ILEAL BYPASS WITH SLEEVE GASTRI

2007 - 2009: 50 patients submitted to SADI-S 200 CM

September 2009: SADI-S 250 cm

2009: First patient submitted to SADI-S as a second step

2007 - 2023: 729 patients submitted to SADI-S 200-250-300 cm

Long-Term Results of Single-Anastomosis Duodeno-ileal Bypass with Sleeve Gastrectomy (SADI-S)

Andrés Sánchez-Pernaute¹ • Miguel Ángel Rubio Herrera² • Natalia Pérez Ferré² • Carlos Sáez Rodríguez¹ • Clara Marcuello² • Clara Pañella¹ • Leyre Lopez Antoñanzas¹ • Antonio Torres¹ • Elia Pérez-Aguirre¹

Obes Surg 2022

10 years

- -164 patients (75% fu 10 y)
- -47 y (22-71)
- -BMI 45.8 Kg/m² (34-67)
- -women 99, men 65
- -200 cm (50), 250 cm (99), 300 cm 15
- -12 surgery hypoproteinemia (7 (200 cm), 5 (250 cm)
 - -Def ferritin 66,7%, Vit D 57,9%, Vit A 26,7%
 - -Stool frec 2,4 (0-8)/2,1 (0-6)
 - -36 gastroscopy, 1 IQ hiatal hernia

Time	BMI	EWL (%)	TWL (%)	% failures
Basal	45.8	0	0	0
1 year	26.5	95.5	42	1/153-0.6
2 years	26,2	96.6	42.5	2/146-1.3
3 years	26.9	92.7	41	4/144-2.7
4 years	27.5	89.9	39.7	5/143-3.4
5 years	28	87.8	38.8	8/139-5.7
6 years	27.8	88.7	38.9	5/114-4.4
7 years	28.2	86.8	38	5/104-4.8
8 years	28.3	85.7	37.2	7/95-7.3
9 years	28.4	83.2	36.1	0/02 0.7
10 years	28.9	80.4	34.4	7/60-11.6
		5 years	re	

	Preoperative	5 years	10 years			Freoperative			3 years			10 years	
Insulin (n)	41	7	12		Mean	Range	% abnormal	Mean	Range	% abnormal	Mean	Range	% abnormal
Oral (n)	47	17	27	Triglycerides	183	50-799	57	90.7	37-232	7	113	49-362	20
Diet/no. therapy (n)	13	77	62	(mg/dL) HDL	47.8	23-82	24	53.4	28-85	10.6	54.4	31-92	13
Glycemia (mg/dL)	169.8 (88-408)	104.16	118.2 (74-207)	(mg/dL)	47.0	23-62	24	33.4	20-03	10.0	54.4	31-92	15
HbA1c (%)	7.69 (5.4-14)	5.51	5.86 (4.6-7.9)	LDL	105.2	35-197	64	84.4	26-187	23	90.6	21-172	36
Arterial hypertension (%)	56	25.7	14	(mg/dL)									
Obstructive apnea (%)	54	5.8	2.1	Cholesterol (mg/dL)	190	110-313	41	157.2	84–273	8	166.4	100-264	8.5
				Dyslipidemia (%)			72			35			53.8

Long term complications

Hypoproteinemia

12/164 re-operated – 7,3%

CC - 200 cm - 7 pts - 14%

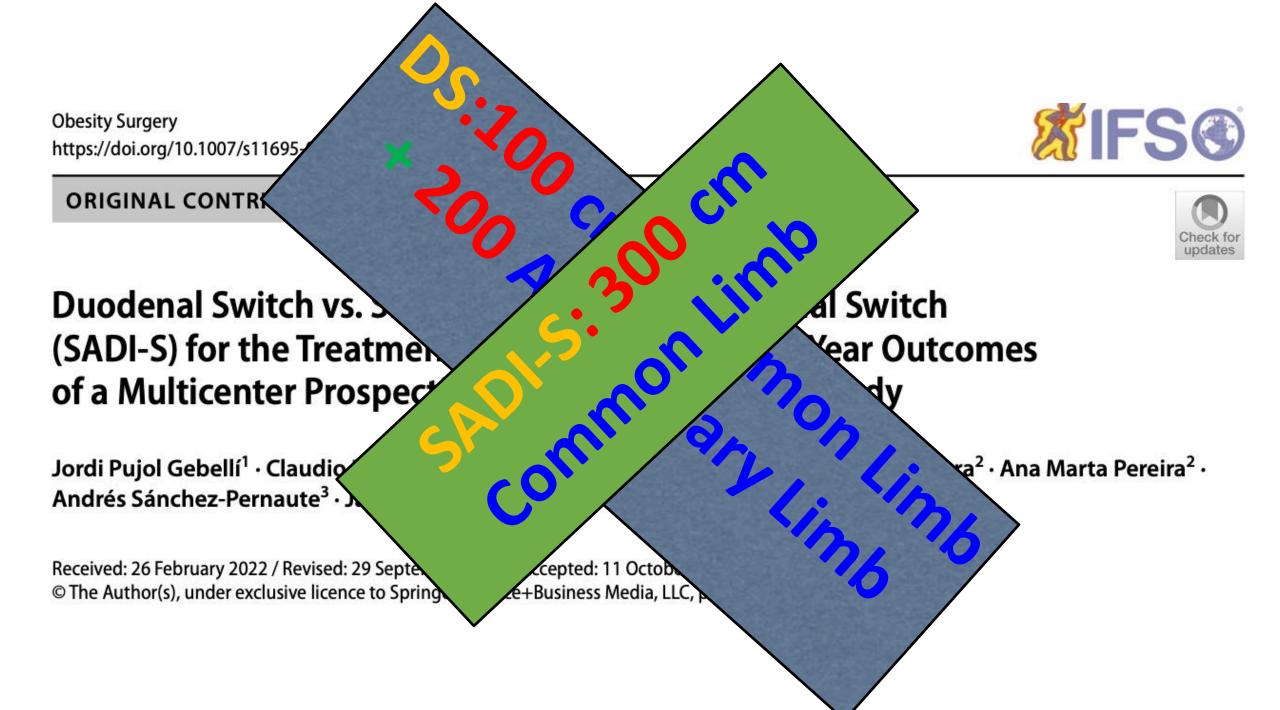
CC - 250 cm - 5 pt - 5%

CC - 300 cm - 0 pts - 0%

Operative factors related to malnutrition

Common channel length

CC	Readmission	Reoperation
200 cm	26%	16%
250 cm	11%	6%
300 cm	0%	0%
	P = 0,02	P = 0,04

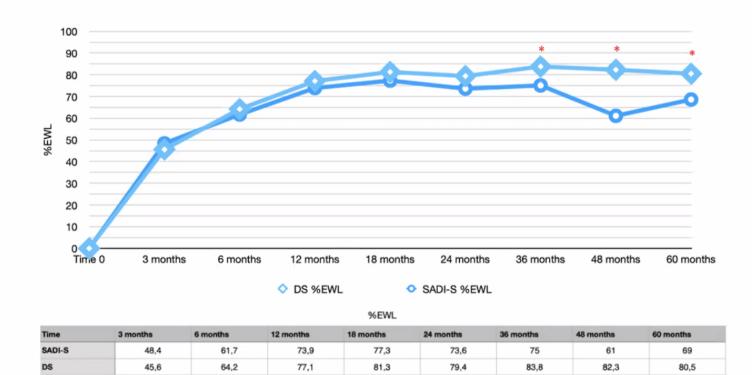

SADI-S vs DS: a Prospective Randomized Multicenter study

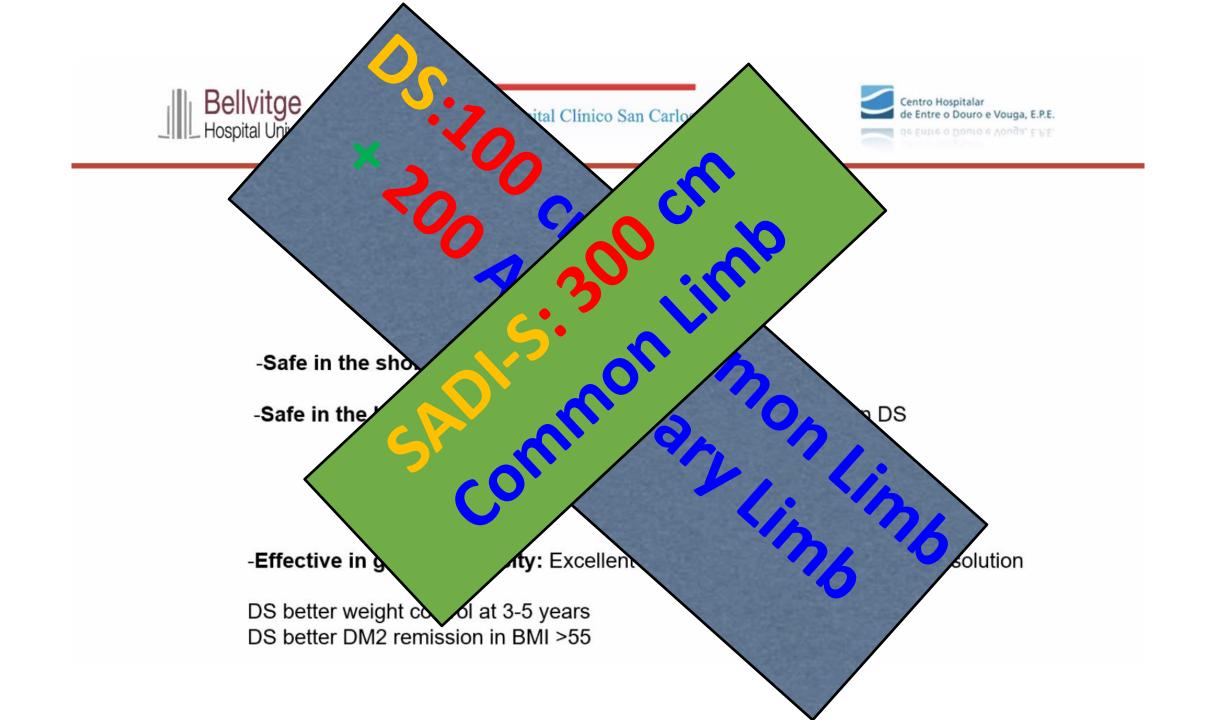
JORDI PUJOL GEBELLI

AMADOR GARCÍA RUIZ DE GORDEJUELA ANA MARTA PEREIRA

MARIO NORA

ANTONIO TORRES GARCÍA ANDRÉS SÁNCHEZ PERNAUTE





Duodenal Switch vs. SADI-S for the treatment of grade IV obesity

5 years outcomes of a multicentre prospective cohort comparative study

SADS vs DS

Short-term Outcomes

Single anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S): short-term utcomes from a prospective cohort study

Amin Andalib, M.D., More Bouchard, M.D., M.Sc., Hussam Alamri, M.D., Alexandre Bougie, More Bouchard, M.D., M.Sc., Olivier Court, M.D.

Short-term weight outcomes stratified ba	sed on procedure and s	stage				Su	rgery for Obesity an	d Related Diseas
	SADI-S, $n = 42$	DS, n = 20	P value	Changes in obe		cedure	and stage	
1-stage procedure, n (%)	31 (74)	8 (40)		Co-morbid			DS, n = 20	
Baseline weight, kg, median (IQR)	132.5 (22.7)	140.8 (23.6)	.36			n = 11	${1\text{-stage, n} = 8}$	Second-stage, n
Baseline BMI, kg/m ² , median (IQR)	48.7 (5.0)	45.9 (8.5)	.79	mo				
6-mo follow-up, rate (%)	23/28 (82)	4/7 (57)					4 (50)	2 (16.7)
BMI change, kg/m ² , median (IQR)	15.8 (4.6)	17.5 (8.0)	.41			/)	1 (25)	2 (100)
TWL, kg, median (IQR)	43.5 (16.0)	51.5 (21.4)	.31				3 (75)	0
EWL, %, median (IQR)	72.6 (30.3)	76.6 (23.6)	.78				0	0
12-mo follow-up, rate (%)	24/27 (89)	4/7 (57)				1 (33.3)	0	0
BMI change, kg/m ² , median (IQR)	19.3 (7.3)	19.3 (5.5)			\	4 (36.4)	7 (87.5)	1 (8.3)
TWL, kg, median (IQR)	51.5 (22.7)	55.6 (13.3)				1 (25)	5 (71.4)	0
EWL, %, median (IQR)	86.8 (22.3)	85.8 (9.0)				1 (25)	2 (28.6)	0
Second-stage procedure, n (%)	11 (26)	12 (60			(5)	2 (50)	0	1 (100)
Interval delay, mo, median (IQR)	23 (20)	26			15 (48.4)	5 (45.5)	5 (62.5)	1 (8.3)
Pre-SG BMI, kg/m ² , median (IQR)	62.7 (29.3)				11 (73.3)	0	1 (20)	0
Baseline weight, kg, median (IQR)	121.1 (53.1)				4 (26.7)	3 (60)	4 (80)	0
Baseline BMI, kg/m ² , median (IQR)	46.8 (12.7)				0	2 (40)	0	1 (100)
6-mo follow-up, rate (%)	7/11 (64)				18 (58.1)	5 (45.5)	5 (62.5)	4 (33.3)
BMI change, kg/m ² , median (IQR)	6.2 (5.1)			n⁵	11 (61.1)	0	1 (20)	1 (25)
TWL, kg, median (IQR)	20.4 (10.1)			ovement	2 (11.1)	0	0	0
EWL, %, median (IQR)	38.8 (29.2)			nchanged	5 (27.8)	5 (100)	4 (80)	3 (75)
12-mo follow-up, rate (%)	5/8 (63)	7/12		GERD, n (%)	11 (35.5)	2 (18.2)	3 (37.5)	1 (8.3)
BMI change, kg/m ² , median (IQR)	5.3 (5.3)	6.7 (8.		Remission	9 (81.8)	0	2 (66.7)	0
	17.7 (15.4)	17.7 (27.)		Unchanged	2 (18.2)	2 (100)	1 (33.3)	1 (100)
TWL, kg, median (IQR) EWL, %, median (IQR)	36.8 (27.5)	31.6 (18.7)		De novo diagnosis	5 (16.1)	0	1 (12.5)	0

ORIGINAL CONTRIBUTIONS

Single-Versus Double-Anastomosis Duodenal Switch: Outcomes tratified by Preoperative BMI

Romulo P. Lind¹ · Muhammad Ghanem¹ · Andre F. Teixeira¹ · Muhammad A. Jawad¹ · Javier Osorio² · Laudio Lazzara² · Lucia Sobrino² · David Ortiz-Ciruela² · Amador Garcia Ruiz de Gordejuela³

Characteristics	BPD-DS	SADI-S	va. 1e
Age, year mean (±SD)	44.3 (10.11)	47.9 (9.9)	0.00
Female, gender, n	156	190	
Preop. BMI mean, $kg/m^2 (\pm SD)$	53.2 (10.1)	50.1 (9.2)	0.00
T2D, <i>n</i>	65	86	
HTN, n	124	136	
DLP, n	56	74	
OSA, n	104	105	
Subgroup 1, n	98	139	
Subgroup 2, n	40	39	
Subgroup 3, n	82	62	
LOS, mean, days \pm SD	3.48 ± 3.7	3.13 ± 2.3	0.000
Op. time, mean, minutes ± SD	167.25 ± 33.67	140.85 ± 56.74	0.000

SD, standard deviation; T2D, type 2 diabetes; HTN, hypertension; DLP, dyslipidemia; OSA, observed sleep apnea

Table 2 Weight loss in BPD-DS and SADI-S after 6, 12, and 24 months

0.2	BPD-	DS			SADI	-S	7/1	10
	\overline{n}	BMI \pm SD (kg/m ²)	%EWL	%TBWL	\overline{n}	BMI \pm SD (kg/m ²)	%EWL	%TBWL
Preop. BMI	220	53.2 ± 10.1*			240	50.1 ± 9.2*	V.	
6 months	199	$40.2 \pm 8.9 *$	$44.2 \pm 13.2*$	25 ± 6.3	219	$36.8 \pm 8.3*$	$48.4 \pm 14*$	26.2 ± 6.2
12 months	175	$34.3 \pm 7.0*$	62.4 ± 14.3	35.9 ± 7.9	199	$31.5 \pm 6.6 *$	64.5 ± 15.1	35 ± 7.5
24 months	137	$31.7 \pm 6.3*$	69.4 ± 15.3	$40.3 \pm 9.3 *$	158	$30.3 \pm 5.2*$	67.1 ± 17.1	$36.9 \pm 10.3*$

BMI, body mass index; SADI-S, single-anastomosis duodenal-ileal bypass; DS, duodenal switch; %EWL, percentage of excess weight loss; %TBWL, percentage of total body weight loss

^{*}Represents p values lower than 0.05

Subgroup 1.BMI < 50; Subgroup 2.50 \leq BMI < 55; Subgroup 3. BMI \geq 55 Operation Type: DS MTBWL 6m ■ %TBWL 12mo ■ %TBWL 2Y 50 40 Mean 43 43 39 20 37 37 36 28 24 23 10 Subgroup 1 Subgroup 2 Subgroup 3 Operation Type: SADIS ■ %TBWL 6m %TBWL 12mo %TBWL 2Y 40 Mean 42 41 20 37 36 35 34 29 26 24 10 Subgroup 2 Subgroup 1 Subgroup 3

Fig. 2 %TBWL stratified in the subgroups 6, 12, and 24 months after surgery, in BPD-DS and SADI-S groups

Obesity Surgery https://doi.org/10.1007/s11695-022-06315-2 ORIGINAL CONTRIBUTIONS

Single- Versus Double-Anastomosis Duodenal Switch: Outcomes Stratified by Preoperative BMI

XIFS**®**

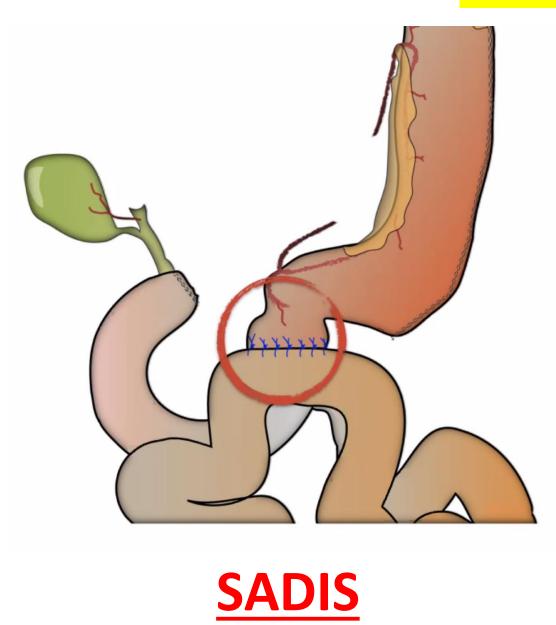
Romulo P. Lind 10 · Muhammad Ghanem 1 · Andre F. Teixeira 1 · Muhammad A. Jawad 1 · Javier Osorio 2 Claudio Lazzara² · Lucia Sobrino² · David Ortiz-Ciruela² · Amador Garcia Ruiz de Gordeiuela

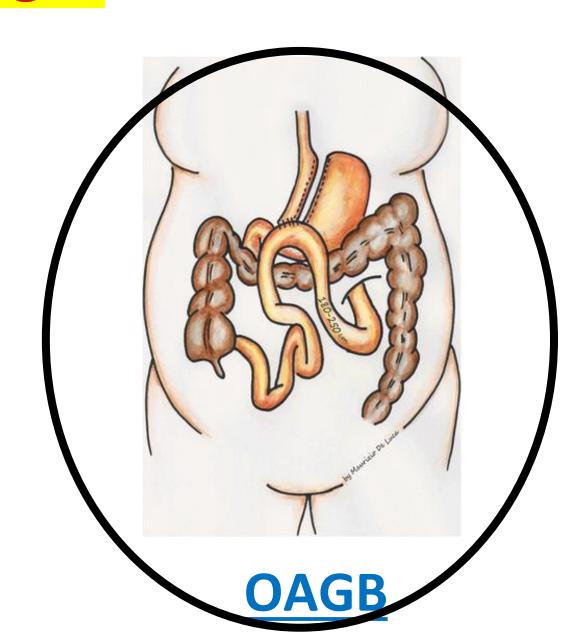
5-year SADI-S: 250 vs 300 cm common channel length. Retrospective MULTICENTER comparison.

Nº		SADIS 250 CC	SADIS 300 CC	
	Nº	179	57	235
	Age			47
116	<mark>Diabetes</mark>	50%	45%	P<0.07
48	REVISIONAL			
	BMI	48	45	P<0.05

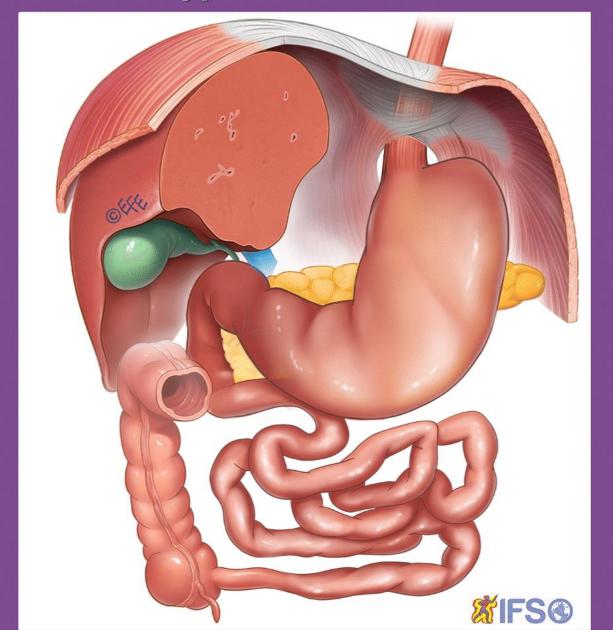
5-year SADI-S: 250 vs 300 cm common channel length. Retrospective MULTICENTER comparison.

RESULTS		SADIS 250 CC	SADIS 300 CC	
	TWL > 30%	86 %	52 %	P<0.03
	Diabetes Remission	64 %	29 %	P=0.01
	HbA1	5,51 %	6,07 %	P=0.01
	Ca, Vitam. D	lower	higher	
	REOPERATION	9	0	P=0.08




Conclusions

1.- Don't do SADI-S with common limb < 250 cm


2.- Pay special attention when measuring (30% errors in reoperated patients)

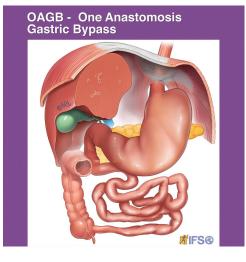
Limb Length

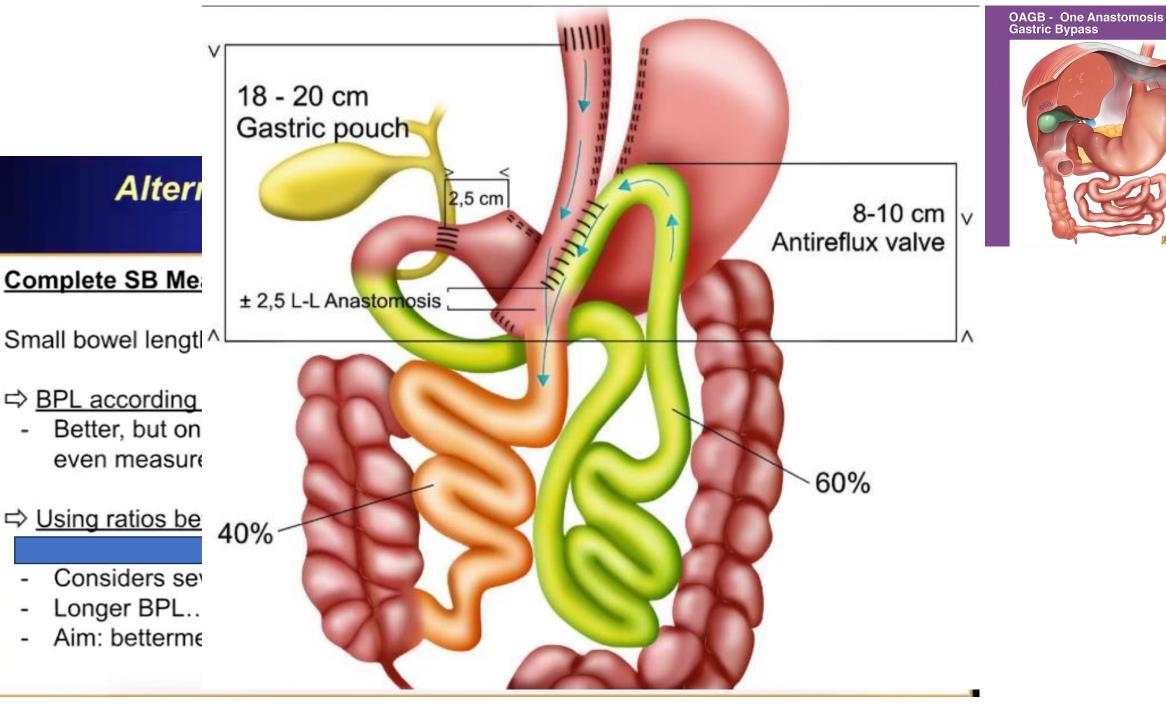
OAGB - One Anastomosis Gastric Bypass

ONE ANASTOMOSIS GASTRIC BYPASS (OAGB)

BP limb length in OAGB (cm.):

- 150
- 180
- 200
- 40%/60%
- 300 from ICV





Alternatives in Determining Limb Lenghts

Fixed Limb Lenghts:

- ⇒ Measure BPL with unknown CC
 - 150 cm...and even shorter BPL lead to similar outcomes with less nutritional complications
 - Long-term studies prove otherwise
- ⇒ Measure BPL and ensure sufficient CC length
 - Subjective
- More recent approach to ↓ complications

ORIGINAL CONTRIBUTIONS

	BPL
Mean	214 cm
Median	200 cm
Mode	200 cm (appeared 70 times)
Count	233
Largest value	450 cm

ORIGINAL CONTRIBUTIONS

	CC
Mean	327 cm
Median	300 cm
Mode	300 cm (appeared 39 ti
Count	208
Smallest value	45 cm
Largest value	900 cm

IFSO POSITION STATEMENT

REVIEW

Obesity Surgery (2021) 31:3251-3278 https://doi.org/10.1007/s11695-021-05413-x

IFSO Update Position Statement on One Anastomosis Gastric Bypass (OAGB)

Maurizio De Luca 1 o · Giacomo Piatto 2 · Giovanni Merola 3 · Jacques Himpens 4 · Jean-Marc Chevallier 5 · Miguel-A Carbajo⁶ · Kamal Mahawar^{7,8} · Alberto Sartori² · Nicola Clemente² · Miguel Herrera⁹ · Kelvin Higa^{10,11} · Wendy A. Brown 12 · Scott Shikora 13,14

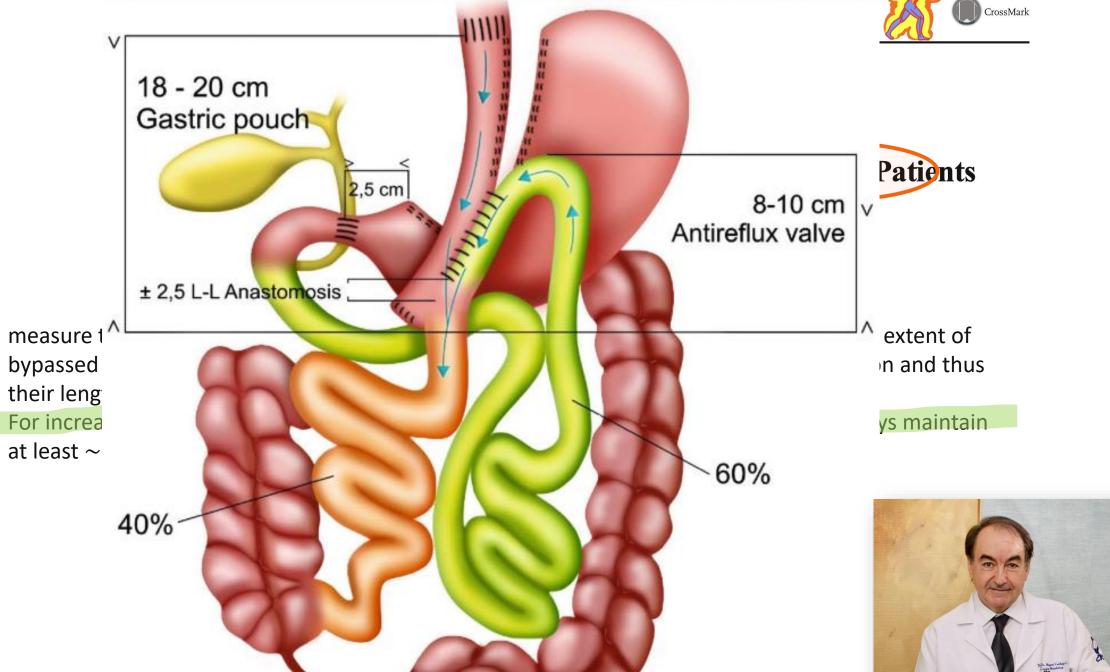
> Limb length has been reported in 25 studies, including 3 RCTs* In the RCTs, length of the BPL was

> > 200 cm in 227 patients], 150 to 180 cm in 101 individuals], and depending on total bowel length in 180 individuals

> > > ge bit liength of 279 cm.

Given that BPL length appears to be an important variable, RCTs are warranted to address this important issue.

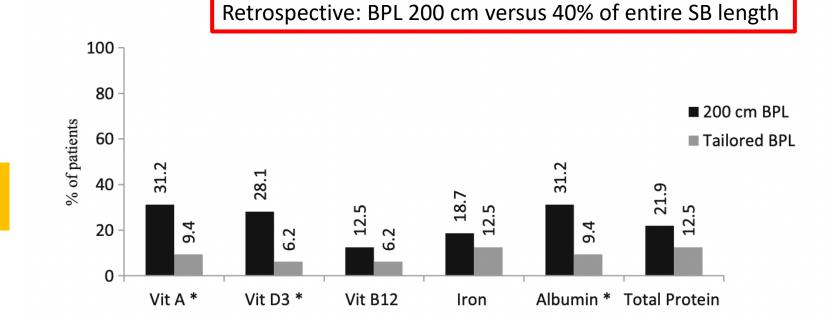
^{*}Robert M, Espalieu P, Pelascini E, et al. Lancet. 2019;393(10178):1299–309.(200 cm) Shivakumar S, Tantia O, Goyal G, et al. Obes Surg. 2018;28(9):2820-8. Ospanov O, Buchwald JN, Yeleuov G, et al. Obes Surg. 2019;29(12):4131-7. (200 cm)


Effect of Biliopancreatic Limb Length on Weight Loss, Postoperative Complications, and Remission of Comorbidities in One Anastomosis Gastric Bypass: a Systematic Review and Metaanalysis

Obesity Surgery Tasdighi, Erfan; Barzin, Maryam; Mahawar, Kamal K.; ... Vol. 32 Issue 3, pp. 892–903, 2022.

- →Both BPL length < 200 cm significantly decreased BMI.
- →Effect on comorbidities and postoperative complications, BPL< 200 cm is safer and more effective.

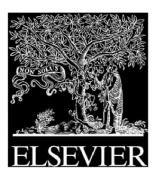
Therefore, standardization of BPL length < 200 cm is suggested. Bypassing ≥ 200 cm of the small bowel does not ameliorate weight loss or resolve comorbidities significantly, and it is related to more frequent postoperative complications and nutritional deficiencies



NEW CONCEPT

One Anastomosis Gastric Bypass–Mini Gastric Bypass with Tailored Biliopancreatic Limb Length Formula Relative to Small Bowel Length: Preliminary Results

Iman Komaei ¹ · Federica Sarra ¹ · Claudio Lazzara ¹ · Michele Ammendola ² · Riccardo Memeo ³ · Giuseppe Sammarco ² · Giuseppe Navarra ¹ · Giuseppe Currò ^{1,2}



Percentage of patients with nutritional deficiencies in 200 cm BPL and tailored BPL lenghts

1 year follow-up32 patients in both groups

Surgery for Obesity and Related Diseases 15 (2019) 1712–1718

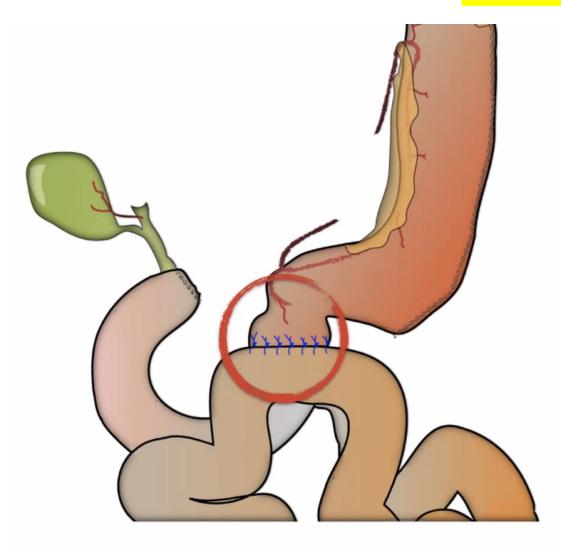
Original article

Measuring the small bowel length may decrease the incidence of malnutrition after laparoscopic one-anastomosis gastric bypass with tailored bypass limb

Tien-Chou Soong, M.D.^{a,b}, Owaid M. Almalki, M.D.^{b,c}, Wei-Jei Lee, M.D., Ph.D.^{b,*}, Kong-Han Ser, M.D.^b, Jung-Chien Chen, M.D.^b, Chun-Chi Wu, M.D.^b, Shu-Chun Chen, R.N.^b

Since 2005, we have performed OAGB with tailored limb according to preoperative BMI(Group 1). The biliopancreatic (BP) limb was 150-cm long for BMI <35 kg/m2, with a 10-cm increase or decrease for every BMI unit increase

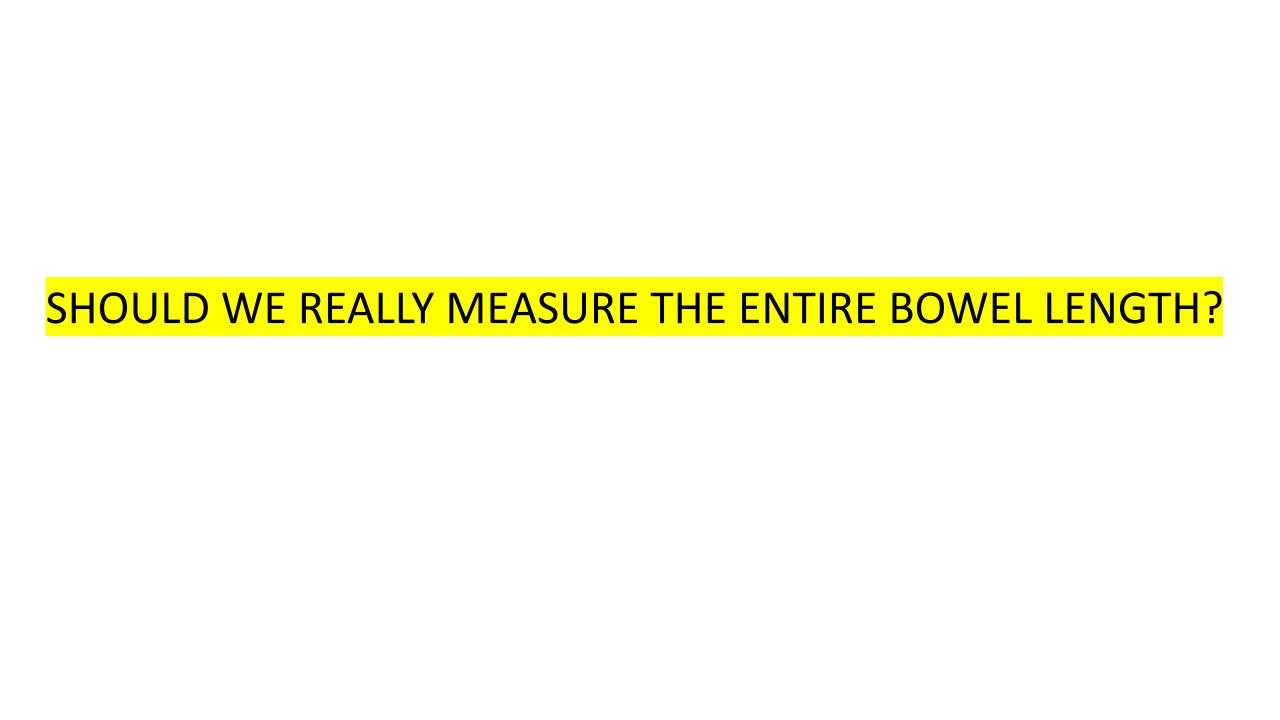
From July 2014, we measured the whole small bowel length to ker a me common channel at least 400-cm long (Group 4). In 2019, data from 470 patients of Group 2 were compared with those of a matched group from Group 1.

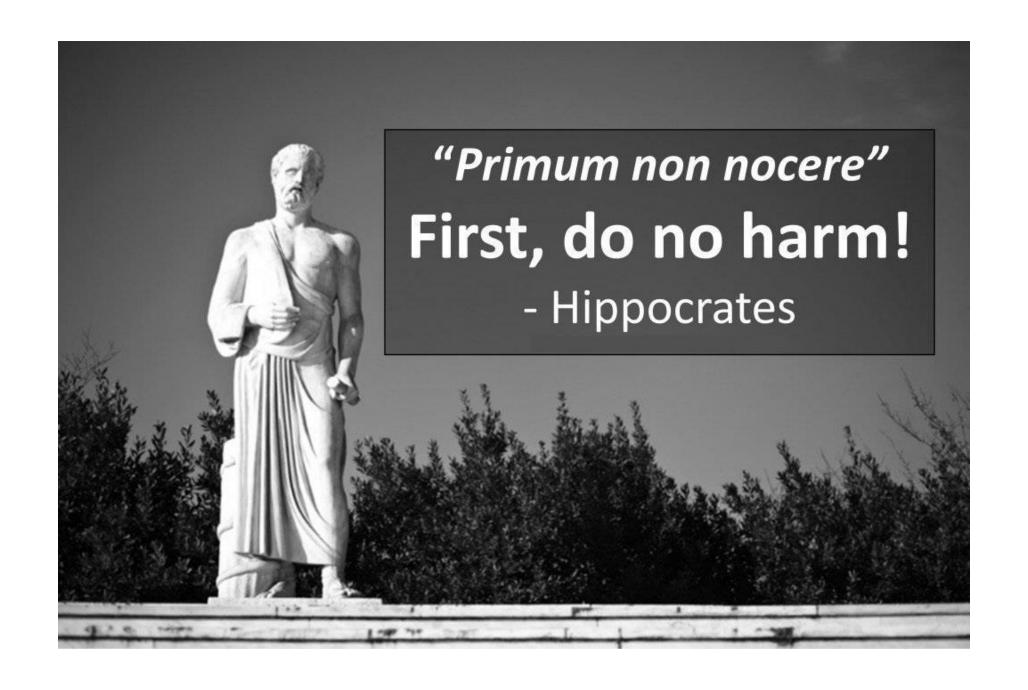

Table 4
Weight loss and nutrition deficiency in both groups before and 1 year after surgery

Group I (%)	Group II (%)	P value
4.8	3.7	.259
11.1	5.9	<.001*
23.1	22.4	.450
33.8*	21.7	<.001*
.7	.9	.670
2.8	1.5	<.001*
	4.8 11.1 23.1 33.8*	4.8 11.1 23.1 23.1 22.4 21.7 .7

Preop = preoperative; postop = postoperative, SLIDT = secondary hyperparathyroidism.

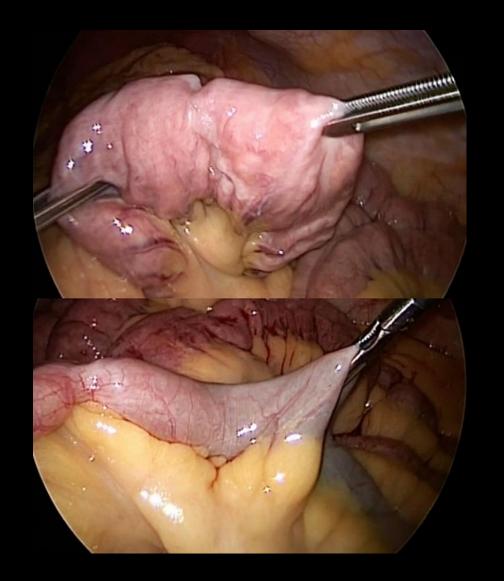
^{*} P < .05.


Limb Length

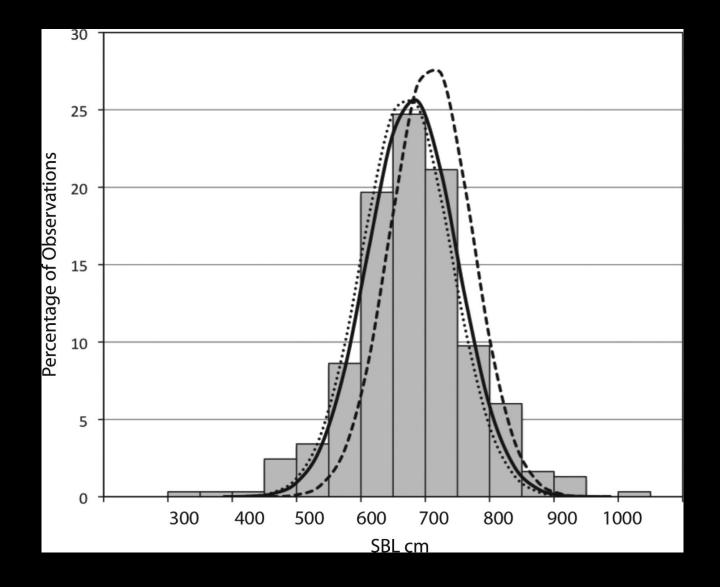


Primum Non Nocere

INACCURACY


MORBIDITY!

Bowel length: measurement, predictors, and impact on bariatric and metabolic surgery


Roberto M. Tacchino, M.D.

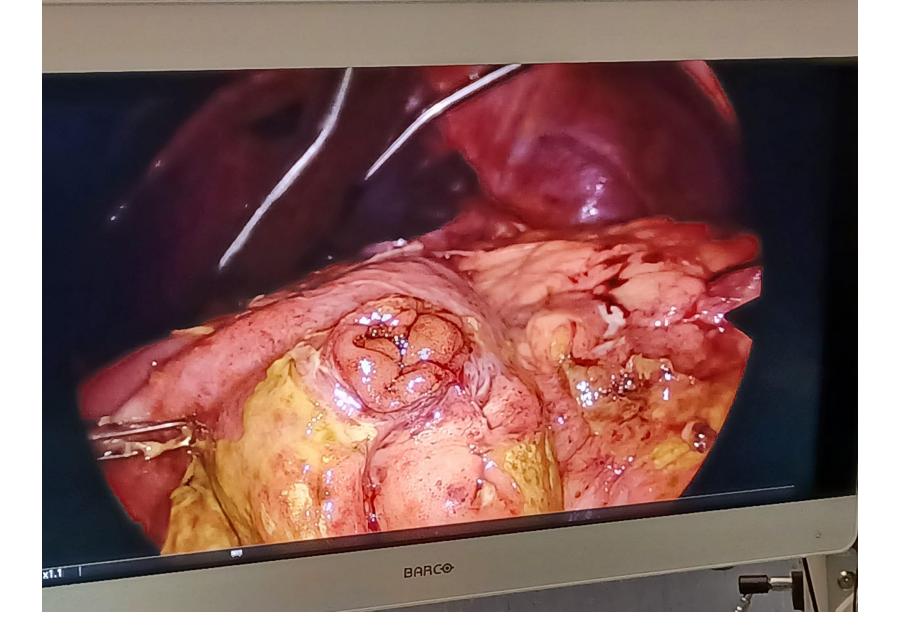
Surgery for Obesity and Related Diseases
Volume 11 Issue 2 Pages 328-334 (March 2015)

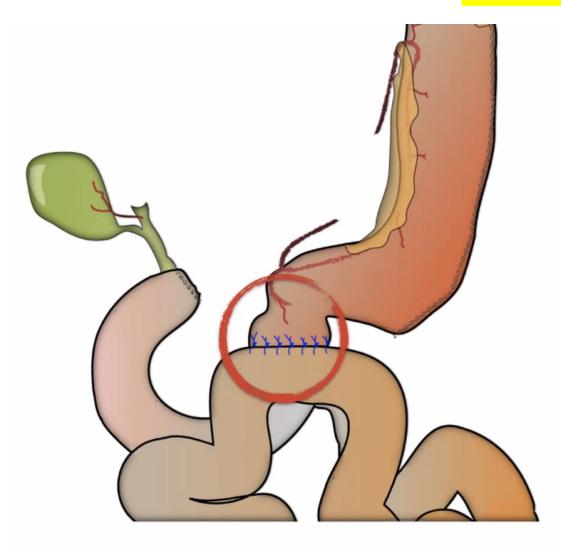
DOI: 10.1016/j.soard.2014.09.016

> Front Surg. 2022 Nov 7;9:1001329. doi: 10.3389/fsurg.2022.1001329. eCollection 2022.

How accurate is the visual estimation of bowel length by endoscopic surgeons?

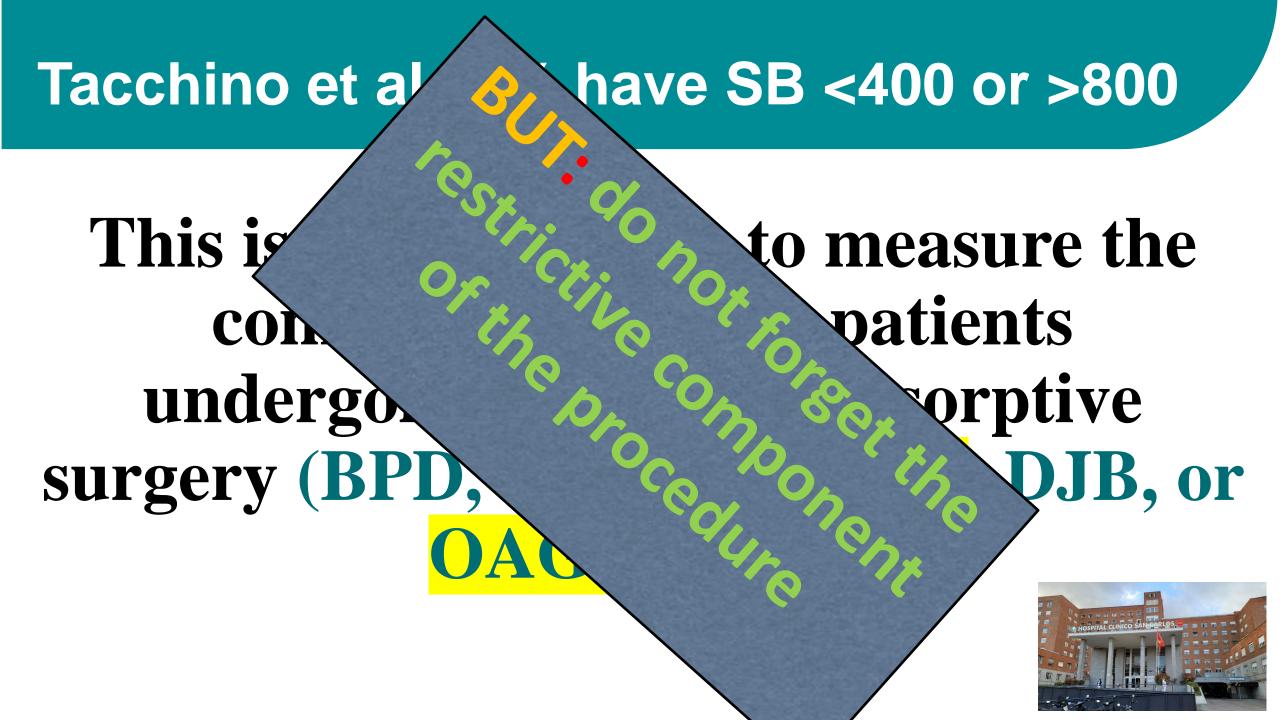
Sahar Mirzaee ¹, Mahdieh Golzarand ², Reza Parsaei ³, Karamollah Toolabi ¹, Alireza Amirbeigi ⁴


A total of 86 participants answered the questionnaire. The mean error of estimation was 4.62 cm (27%). Twenty-eight participants (33%) had significant errors in estimation of bowel length.


Primum Non Nocere

INACCURACY

MORBIDITY!


Limb Length

Primum Non Nocere

common limb (TALL) should be at least250-300 cm long (longer in vegetarians)

→ take into account the Restrictive component of the procedure

13th Congress of the International Federation for the Surgery of Obesity (IFSO)
European Chapter

IFSO-EC2025.COM

